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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Unique prototyping platform:

Standard data formats

Data structures/library routines

Fully unstructured grids

Rapid prototyping:

– Differentiation operators
– Automatic differentiation
– Object-oriented framework
– State functions

Industry-standard simulation

http://www.mrst.no



MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Large international user base:

downloads from the whole world

123 master theses

56 PhD theses

226 journal papers (not by us)

144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry Google Analytics: access pattern for www.mrst.no

Period: 1 July 2018 to 31 December 2019



Reservoir simulation in MATLAB...? 3 / 22

Different development process:

Use abstractions to express your ideas in a form close to the underlying mathematics

Build your program using an interactive environment:

– try out each operation and build program as you go

Dynamic type checking lets you prototype while you test an existing program:

– run code line by line, inspect and change variables at any point
– step back and rerun parts of code with changed parameters
– add new behavior and data members while executing program

MATLAB is fairly efficient using vectorization, logical indexing, external iterative solvers, etc.

Avoids build process, linking libraries, cross-platform problems

Builtin mathematical abstractions, numerics, data analysis, visualization, debugging/profiling,

Use scripting language as a wrapper when you develop solvers in compiled languages



Community code: software organization 4 / 22

Modular design:

small core with mature and well-tested functionality
used in many programs or modules

semi-independent modules that extend/override core
functionality

in-source documentation like in MATLAB

all modules must have code examples and/or tutorials

new development: project −→ module

This simplifies how we distinguish public and in-house or
client-specific functionality
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Latest release: 51 modules 5 / 22

Grid generation and coarsening

ECLIPSE input and output

Upscaling / multiscale solvers

Consistent discretizations

Black-oil, EOR, compositional

Fractures: DFM, EDFM, DPDP

Geomechanics, geochemistry, geothermal

Unsaturated media (Richards eq.)

Multisegment wells (general network)

CO2 storage laboratory

Adjoints, optimization, ensembles

Pre/postprocessing/visualization

Flow diagnostics

. . .

3000 files, 213 000 code lines



User resources (getting help) 6 / 22

website user forum textbook

manpages tutorial codes online tutorials



Fully unstructured grids 7 / 22

Low permeability

Thin cells

Internal gap

Non-matching faces

Twisted grid

Many neighbors Degenerate cells

A wide variety of grid formats:

Cartesian and rectilinear

Corner-point

Tetrahedral, prismatic, PEBI

General polyhedral/polytopal

Hybrid, cut-cell, or depogrids

Local refinements . . .

MRST grids are chosen to always be
fully unstructured
−→ can implement algorithms without
knowing the specifics of the grid

Also: coarse grids made as static or
dynamic partitions of fine grid



Incompressible flow solvers 8 / 22

%% Define the model
gravity reset on

G = cartGrid([2, 2, 30], [1, 1, 30]);
G = computeGeometry(G) ;
rock.perm = repmat(0.1∗darcy() , [G.cells.num, 1]) ;
fluid = initSingleFluid() ;
bc = pside([] , G, 'TOP' , 1:G.cartDims(1) , . . .

1:G.cartDims(2) , 100.∗barsa()) ;

%% Assemble and solve the linear system
S = computeMimeticIP(G, rock) ;
sol = solveIncompFlow(initResSol(G , 0.0) , . . .

initWellSol([] , 0.0) , . . .
G, S, fluid, 'bc' , bc) ;

%% Plot the face pressures
newplot;
plotFaces(G, 1:G.faces.num, sol.facePressure./barsa) ;
set(gca, 'ZDir' , 'reverse ') , title( 'Pressure [bar] ')
view(3) , colorbar

∇ · ∇(p+ ρ~g) = 0

Oldest part of MRST:

Procedural programming

Structs for reservoir state, rock

parameters, wells, b.c., and source term

Fluid behavior: struct with function

pointers

Advantages:

hide specific details of geomodel and

fluid model

vectorization: efficient/compact code

unified access to key parameters



Rapid prototyping: discrete differentiation operators 9 / 22

Grid structure in MRST
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For finite volumes, discrete grad operator maps from cell pair C1(f), C2(f) to face f :

grad(p)[f ] = p[C2(f)]− p[C1(f)],

where p[c] is a scalar quantity associated with cell c. Discrete div maps from faces to cells

Both are linear operators and can be represented as sparse matrix multiplications



Close correspondence with mathematics 10 / 22

Incompressible flow:

∇ · (K∇p) + q = 0

Compressible flow:

∂(φρ)

∂t
+∇ · (ρK∇p) + q = 0

Continuous

Incompressible flow:

eq = div(T .* grad(p)) + q;

Compressible flow:

eq = (pv(p).* rho(p)-pv(p0).* rho(p0))/dt ...

+ div(avg(rho(p)).*T.*grad(p))+q;

Discrete in MATLAB

Discretization of flow models leads to large systems of nonlinear equations. Can be
linearized and solved with Newton’s method

F (u) = 0 ⇒ ∂F

∂u
(ui)(ui+1 − ui) = −F (ui)

Coding necessary Jacobians is time-consuming and error prone
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Automatic differentiation 11 / 22

General idea:

Any code consists of a limited set of arithmetic operations and elementary functions

Introduce an extended pair, 〈x, 1〉, i.e., the value x and its derivative 1

Use chain rule and elementary derivative rules to mechanically accumulate derivatives at
specific values of x

– Elementary: v = sin(x) −→ 〈v〉 = 〈sinx, cosx〉
– Arithmetic: v = fg −→ 〈v〉 = 〈fg, fgx + fxg〉
– Chain rule: v = exp(f(x)) −→ 〈v〉 = 〈exp(f(x)), exp(f(x))f ′(x)〉

Use operator overloading to avoid messing up code

[x,y] = initVariablesADI(1,2);

z = 3*exp(-x*y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y
∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2



Example: incompressible single-phase flow 12 / 22

% Make grid

G = twister(cartGrid ([8 8]));

G = computeGeometry(G);

% Set source terms (flow SW -> NE)

q = zeros(G.cells.num ,1);

q([1 end]) = [1 -1];

% Unit insotropic permeability

K = ones(G.cells.num ,4); K(:,[2 3]) = 0;

% Make grid using external grid generator

pv = [-1 -1; 0 -.5; 1 -1; 1 1; 0 .5; -1 1; -1 -1];

fh = @(p,x) 0.025 + 0.375* sum(p.^2 ,2);

[p,t] = distmesh2d(@dpoly , fh, 0.025, [-1 -1; 1 1], pv, pv);

G = computeGeometry(pebi(triangleGrid(p, t)));

% Set source terms (flow SW -> NE)

q = zeros(G.cells.num ,1);

v = sum(G.cells.centroids ,2);

[~,i1]=min(v); [~,i2]=max(v);

q([i1 i2]) = [1 -1];

S = setupOperatorsTPFA(G,rock) ; % Define Div, Grad, etc

p = initVariablesADI(zeros(G.cells.num,1)) ; % Initial ize p as AD variable

eq = S.Div(S.T .∗ S.Grad(p)) + q; % Residual equation: F = Ap + q

eq(1) = eq(1) + p(1); % Fixate pressure

p =−eq.jac{1}\eq.val; % Solve system A
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Example: compressible two-phase flow 13 / 22

[p, sW] = initVariablesADI(p0, sW0) ; % Primary variables

[pIx, sIx] = deal(1:nc, (nc+1):(2∗nc)) ; % Indices of p/S in eq. system

[tol, maxits] = deal(1e−5, 15); % Iteration control

t = 0;

while t< totTime,

t = t + dt;

resNorm = 1e99; nit=0;

[p0, sW0] = deal(value(p) , value(sW)) ; % Prev. time step not AD variable

while (resNorm> tol) && (nit<= maxits) % Nonlinear iteration loop

% one Newton iteration

end

i f nit> maxits,

error( 'Newton solves did not converge ')
end

end

% Evaluate equations

[rW, rO, vol] = deal(rhoW(p) , rhoO(p) , pv(p))) ;

:

water = (vol.∗rW.∗sW− vol0.∗rW0.∗sW0)./dt + div(vW) ;

water(inIx) = water(inIx) − inRate.∗rhoWS;

:

eqs = {oil, water}; % concatenate equations

eq = cat(eqs{:}); % assemble

res = eq.val; % residual

upd =−(eq.jac{1} \ res) ; % Newton update

% Update variables

p.val = p.val + upd(pIx) ;

sW.val = sW.val + upd(sIx) ;

sW.val = max( min(sW.val, 1) , 0);

resNorm = norm(res) ;

nit = nit + 1; ∂W
∂p

∂O
∂p

∂W
∂Sw

∂O
∂Sw



The AD-OO simulator framework 14 / 22

Primary vars

[Res, Jac], info

Assemble: Ax = b

δx

Update variables:
p← p + δp, s← s + δs, ...

Initial ministep:
∆t

Adjusted:
∆t̃

Write to storage

3D visualization

Well curves

State(Ti), ∆Ti, Controls(Ci)

State(Ti + ∆Ti)

Type color legend

Class

Struct

Function(s)

Input

Contains object

Optional output

Initial state Physical model
Schedule

Steps

Time step and control numbers
{(∆T1, C1), ..., (∆Tn, Cn)},

Controls

Different wells and bc
{(W1, BC1), ..., (Wm, BCm)}

Simulator

Solves simulation schedule comprised
of time steps and drive mechanisms
(wells/bc)

simulateScheduleAD

Nonlinear solver

Solves nonlinear problems sub-divided
into one or more mini steps using
Newton’s method

Time step selector

Determines optimal time steps

SimpleTimeStepSelector,

IterationCountSelector,

StateChangeTimeStepSelector, ...

Result handler

Stores and retrieves simulation data
from memory/disk in a transparent
and efficient manner.

Visualization

Visualize well curves, reservoir proper-
ties, etc

plotCellData, plotToolbar,

plotWellSols, ...

State

Primary variables: p, sw, sg, Rs, Rv...

Well solutions

Well data: qW, qO, qG, bhp, ...

Physical model

Defines mathematical model: Resid-
ual equations, Jacobians, limits on
updates, convergence definition...

TwoPhaseOilWaterModel,

ThreePhaseBlackOilModel

Well model

Well equations, control switch, well-
bore pressure drop, ...

Linearized problem

Jacobians, residual equations and
meta-information about their types

Linear solver

Solves linearized problem and returns
increments

BackslashSolverAD, AGMGSolverAD,

CPRSolverAD, MultiscaleSolverAD, ...



Capabilities as in commercial simulators 15 / 22

Data

Class

Struct

Function

Input

Contains

Input deck

Input parser

Reads complete simulation decks:
grid and petrophysics, fluid and rock
properties, region information, well
definitions, operating schedule, con-
vergence control, etc

Reservoir model

Description of geology and fluid behavior as
well as discrete averaging and spatial dis-
cretization operators

PetrophysicsGrid Fluids
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Physical variables inside
the reservoir
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Well state

Physical variables inside
the wellbore
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s
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s
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s
p, pbh

Schedule

Time steps and controls and
settings for wells and boundary
conditions

Wells

Example:

500 1000 1500 2000 2500 3000

Time (days)

0

0.5

1

1.5

2

2.5

Oil (stb)

Water (stb)

Gas (mscf)

Field production compared with
OPM Flow for the Norne field



State functions: modularity and computational cache 16 / 22

It would be convenient to have:

Dependency management: keep track of dependency
graph, ensure all input quantities have been evaluated
before evaluating a function

Generic interfaces: avoid defining functional
dependencies explicitly, e.g., G(S), and G(p, S).

Lazy evaluation with caching

Enable spatial dependence in parameters while
preserving vectorization potential

Implementation independent of the choice of primary
variables

State function: any function that is
uniquely determined by the contents of
the state struct alone

Implemented as class objects, gathered
in functional groups
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Simulator: differentiable graph 17 / 22

Vi,α Vi

λf
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gρα∆z

TfΘα

vα

Θα

Θα ≤ 0

∇pα
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Flux
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pressure

s

state

Example: State-function diagram for a simple black-oil model.

Each entity is a state function that is easy to replace.

Idea: apply this concept to

flow property evaluation

PVT calculations

accumulation, flux, and source terms

spatial/temporal discretization

Simulator −→ differentiable graph

Further granularity

Immiscible components

Black-oil type components

Compositional components

Concentration components

Combined at runtime to form compact
models with only necessary unknowns



What about computational performance? 18 / 22

Total time of a program consists of several parts:

programming + debugging

+ documenting + testing + executing

MRST is designed to prioritize the first four over the last

Does this mean that MRST is slow and not scalable?

No, I would say its is surprisingly efficient

Potential concerns:

MATLAB is interpreted

cure: JIT, vectorization, logical indexing,

pre-allocation, highly-efficient libraries

Redundant computations

cure: state functions = dependency

graph + computational cache

Computational overhead

cure: new auto diff backends

Scalability/performance

cure: external high-end iterative solvers
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New backends for automatic differentiation 19 / 22
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New AD backends: storage optimized wrt access pattern, MEX-accelerated operations



Efficient linear solvers 20 / 22

Interface to external linear algebra packages implemented as classes in AD-OO framework

Example: compressible three-phase, black-oil problem

Solver Req. 8,000 cells 125,000 cells 421,875 cells 1,000,000 cells

LU – 2.49 s 576.58 s – –

CPR∗ – 0.90 s 137.30 s – –

CPR∗ AGMG 0.18 s 3.60 s 13.78 s 43.39 s

CPR∗ AMGCL 0.21 s 3.44 s 16.20 s 51.35 s

CPR AMGCL 0.07 s 0.43 s 3.38 s 10.20 s

CPR AMGCL† 0.05 s 0.86 s 1.97 s 5.60 s

CPR AMGCL‡ 0.05 s 0.38 s 1.33 s 3.82 s

∗ – in MATLAB, † – block AMGCL (block ILU + AMG/CPR), ‡ – block AMGCL with tweaks

Performance is approaching commercial and compiled academic codes



New book: Advanced modelling with MRST 21 / 22

Berge et al.: Constrained Voronoi grids Al Kobaisi & Zhang: nonlinear FVM Lie & Møyner: multiscale methods

Wong et al.: embedded discrete fractures Olorode et al.; fractured unconventionals March et al.: unified framework, fractures

Varela et al.: unsaturated poroelasticity Collignon et al.: geothermal systems Andersen: coupled flow & geomechanics

Møyner: compositional

Sun et al.: chemical EOR

Møyner: state functions, AD backends

Klemetsdal & Lie: discontinuous Galerkin
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