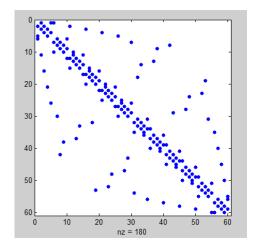


Tackling Big Data with MATLAB

Adam Filion Application Engineer MathWorks, Inc.

Challenges of Big Data

"Any collection of data sets so large and complex that it becomes difficult to process using ... traditional data processing applications." (Wikipedia)

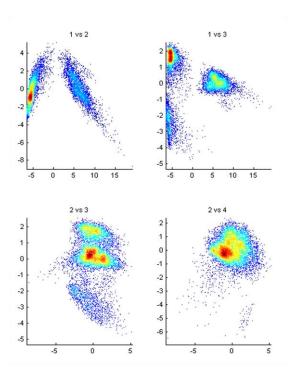

- Getting started
- Rapid data exploration
- Development of scalable algorithms
- Ease of deployment

MATLAB and Memory

Best Practices for Memory Usage

- Use 64-bit MATLAB whenever possible
- Use the appropriate data storage
 - Use only the precision your need
 - Sparse Matrices
 - Categorical Arrays
 - Be aware of overhead of cells and structures
- Minimize Data Copies
 - Lazy copy
 - Nested functions
 - In place operations
 - If using objects, consider handle classes

<pre>function primaryFcn x = 1; y = x; nestedFcn</pre>
<pre>function nestedFcn x = x + 1; end end</pre>



Big Data Capabilities in MATLAB

Memory and Data Access

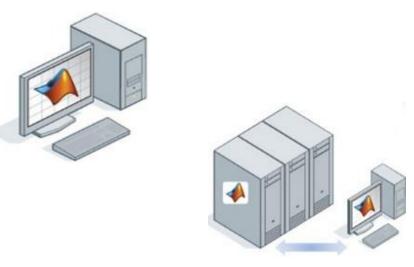
- 64-bit processors
- Memory Mapped Variables
- Disk Variables
- Databases

Datastores R2014b

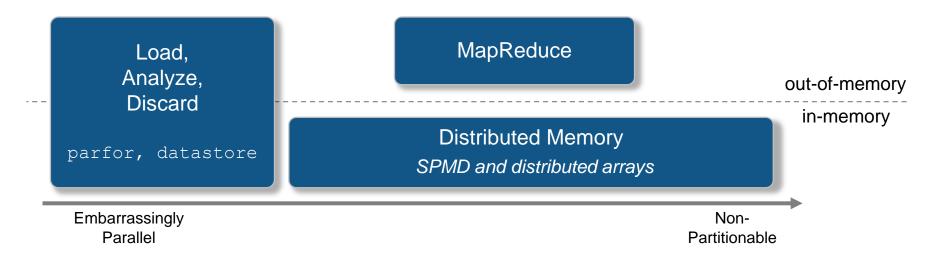
Programming Constructs

- Streaming
- Block Processing
- Parallel-for loops
- GPU Arrays
- SPMD and Distributed Arrays
- MapReduce R2014b

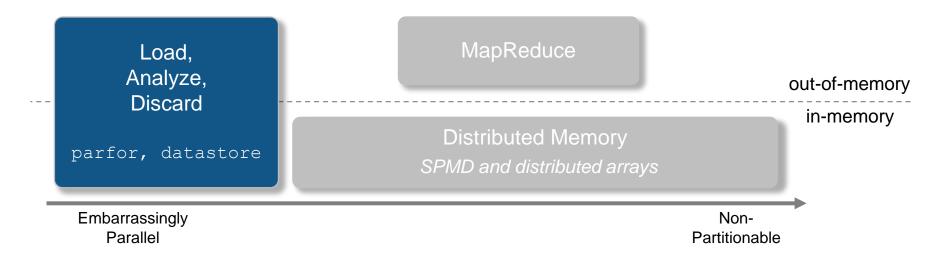
Platforms


- Desktop (Multicore, GPU)
- Clusters
- Cloud Computing (MDCS on EC2)

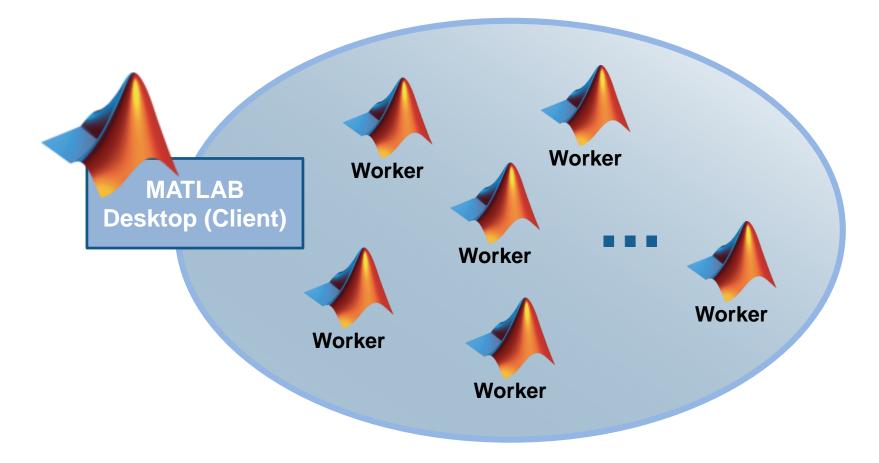
Hadoop R2014b


Considerations for Choosing an Approach

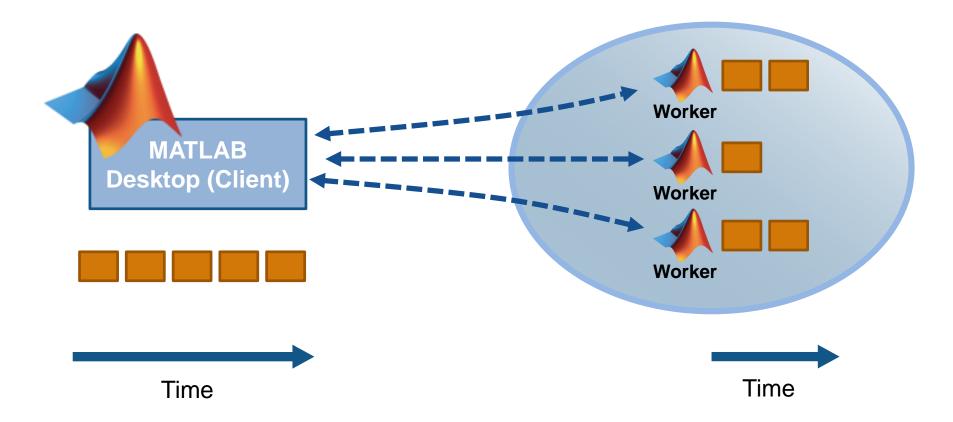
- Data characteristics
 - Size, type and location of your data
- Compute platform
 - Single desktop machine or cluster
- Analysis Characteristics
 - Embarrassingly Parallel
 - Analyze sub-segments of data and aggregate results
 - Operate on entire dataset


Techniques for Big Data in MATLAB

Complexity


Techniques for Big Data in MATLAB

Complexity



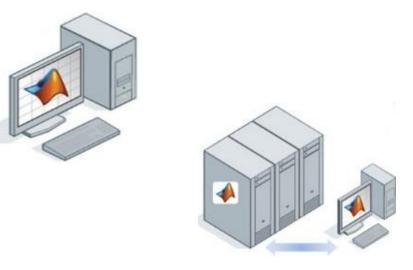
Parallel Computing with MATLAB

Speed up Using Simultaneous Workers

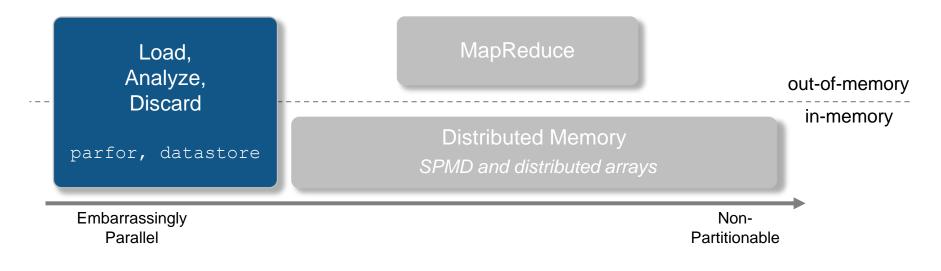
Demo: Determining Land Use

Using Parallel for-loops (parfor)

- Data
 - Arial images of agriculture land
 - 24 TIF files
- Analysis
 - Find and measure irrigation fields
 - Determine which irrigation circles are in use (by color)
 - Calculate area under irrigation



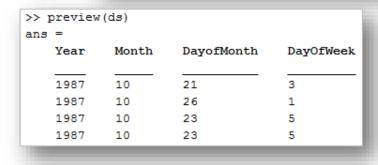
When to Use parfor


Data Characteristics

- Can be of any format (i.e. text, images) as long as it can be broken into pieces
- The data for each iteration must fit in memory
- Compute Platform
 - Desktop (Parallel Computing Toolbox)
 - Cluster (MATLAB Distributed Computing Server)
- Analysis Characteristics
 - Each iteration of your loop must be independent

Techniques for Big Data in MATLAB

Complexity



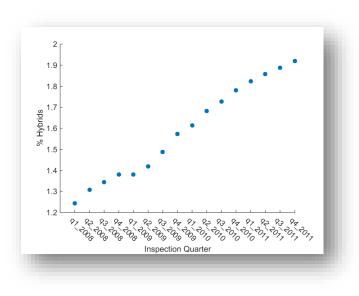
Access Big Data

datastore

- Easily specify data set
 - Single text file or collection of text files
 - Data stored on HDFS
- Preview data structure and format
- Select data to import using column names
- Incrementally read subsets of the data

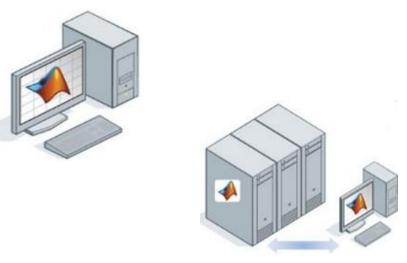
E Desktop	*	Name	Date modified	Туре	Size
Downloads		1987.csv	8/13/2014 3:37 PM	WinZip File	12,356 KB
Google Drive		🌒 1988.csv	8/13/2014 3:45 PM	WinZip File	48,339 KB
Mathworks		🍕 1989.csv	8/13/2014 3:44 PM	WinZip File	48,050 KB
Secent Places		🔍 1990.csv	8/13/2014 3:45 PM	WinZip File	50,822 KB
Mag 1 11		🔍 1991.csv	8/13/2014 3:43 PM	WinZip File	48,709 KB
Libraries	=	🔍 1992.csv	8/13/2014 3:46 PM	WinZip File	48,869 KB
Music		🍕 1993.csv	8/13/2014 3:43 PM	WinZip File	48,938 KB
Pictures		획 1994.csv	8/13/2014 3:54 PM	WinZip File	49,926 KB
Videos		🌒 1995.csv	8/13/2014 4:06 PM	WinZip File	73,127 KB
S videos		🌒 1996.csv	8/13/2014 4:07 PM	WinZip File	74,110 KB
🝓 Homegroup		🌯 1997.csv	8/13/2014 4:09 PM	WinZip File	74,908 KB
Tomegroup		1998.csv	8/13/2014 4:06 PM	WinZip File	74,887 KB


```
airdata = datastore('*.csv');
airdata.SelectedVariables = {'Distance', 'ArrDelay`};
```


```
data = read(airdata);
```

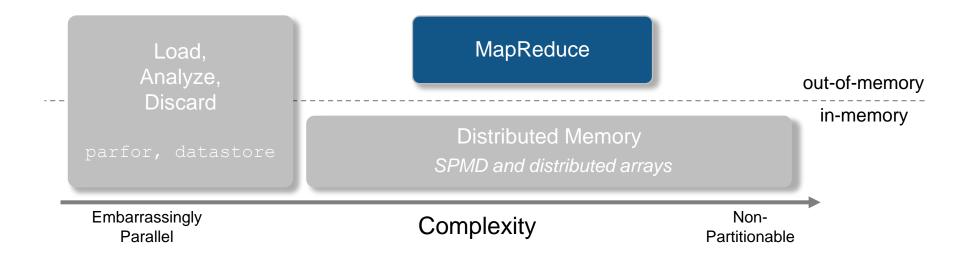

Demo: Vehicle Registry Analysis Using a DataStore

- Data
 - Massachusetts Vehicle Registration
 Data from 2008-2011
 - 16M records, 45 fields
- Analysis
 - Examine hybrid adoptions
 - Calculate % of hybrids registered by quarter
 - Fit growth to predict further adoption


muni_id	veh_zip	insp_year	model_year	make
325	1089	2011	2008	'Hyundai'
325	1089	2009	2008	'Hyundai'
288	1776	2011	2008	'Acura'
288	1776	2008	2008	'Acura'
145	2364	2011	2005	'Chevrolet
325	1089	2010	2008	'Hyundai'
325	1089	2011	2008	'Hyundai'
288	1776	2009	2008	'Acura'

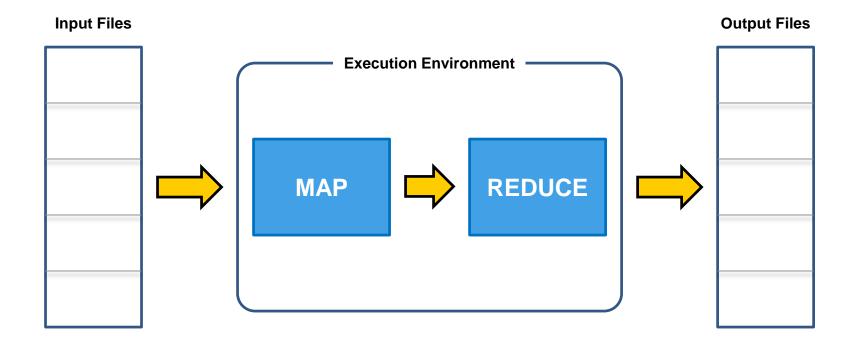
When to Use datastore

- Data Characteristics
 - Text data in files or stored in the Hadoop Distributed File System (HDFS)
- Compute Platform
 - Desktop
- Analysis Characteristics
 - Supports Load, Analyze, Discard workflows
 - Incrementally read chunks of data, process within a while loop



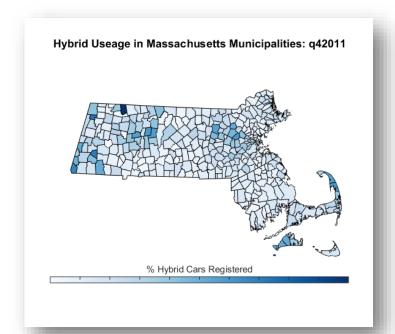
Reading in Part of a Dataset from Files

- Text file, ASCII file
 - datastore
- MAT file
 - Load and save part of a variable using the matfile
- Binary file
 - Read and write directly to/from file using memmapfile
 - Maps address space to file
- Databases
 - ODBC and JDBC-compliant (e.g. Oracle, MySQL, Microsoft, SQL Server)



Techniques for Big Data in MATLAB

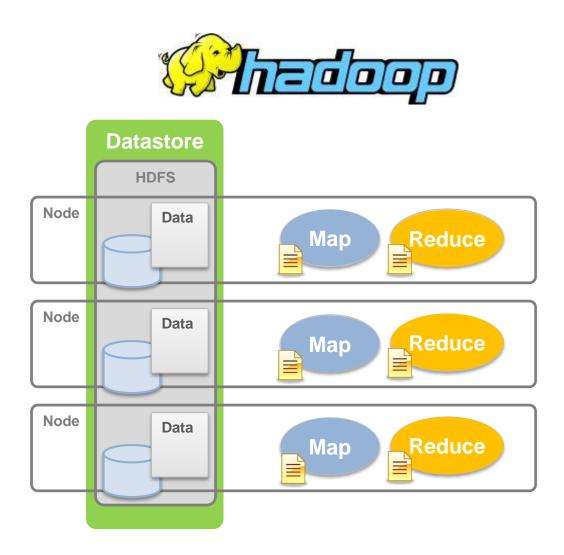
MapReduce Programming Model


- mapreducer
- datastore
- mapreduce

Demo: Vehicle Registry Analysis Using MapReduce

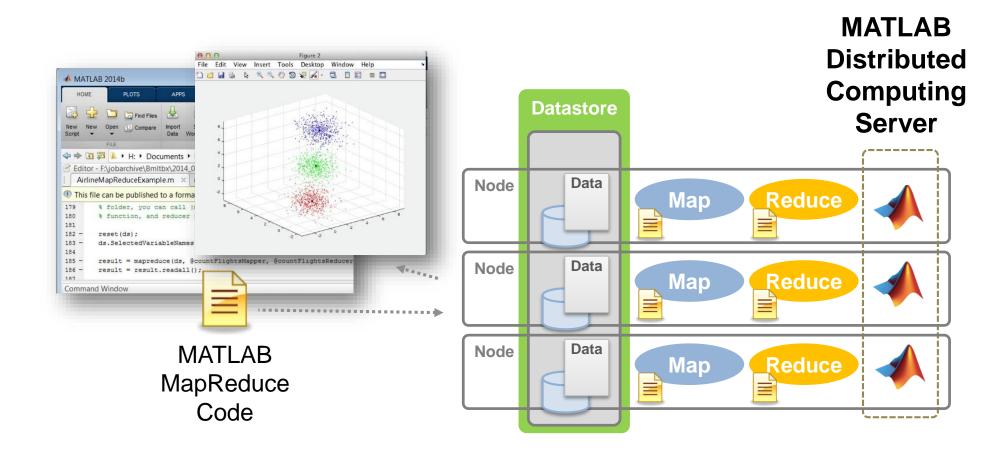
- Data
 - Massachusetts Vehicle Registration Data from 2008-2011
 - 16M records, 45 fields
- Analysis
 - Examine hybrid adoptions
 - Calculate % of hybrids registered by quarter

muni_id	veh_zip	insp_year	model_year	make
325	1089	2011	2008	'Hyundai'
325	1089	2009	2008	'Hyundai'
288	1776	2011	2008	'Acura'
288	1776	2008	2008	'Acura'
145	2364	2011	2005	'Chevrolet'
325	1089	2010	2008	'Hyundai' 🌓
325	1089	2011	2008	'Hyundai'
288	1776	2009	2008	'Acura'
A Common		and the second	the second second	

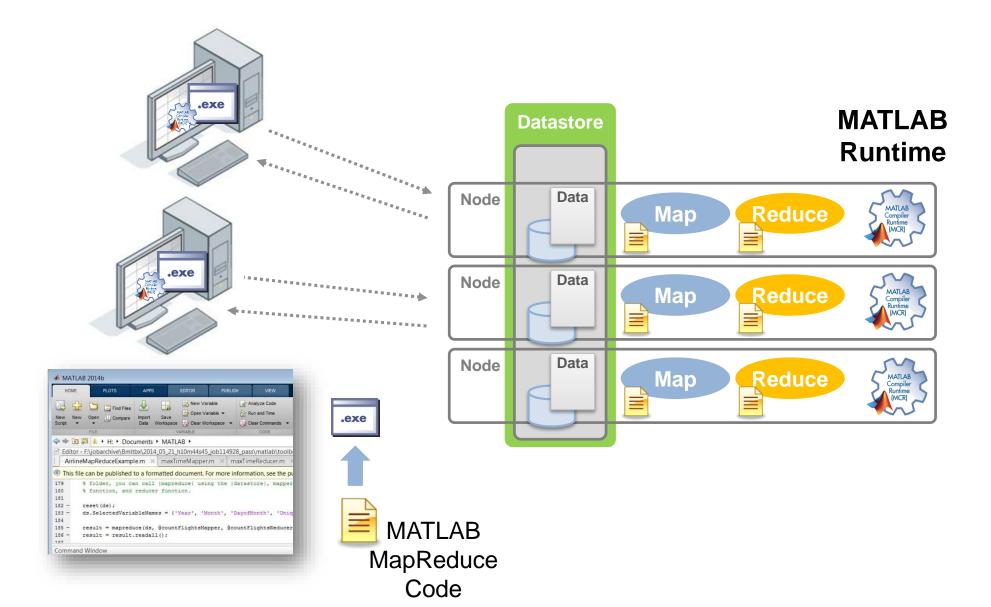

mapreduce

	Dat	a Sto	ore	
Veh_typ	Q3_08	Q4_08	Q1_09	Hybrid
Car	1	1	1	0
SUV	0	1	1	1
Car	1	1	1	1
Car	0	0	1	1
Car	0	1	1	1
Car	1	1	1	1
Car	0	0	1	1
SUV	0	1	1	0
Car	1	1	1	0
SUV	1	1	1	1
Car	0	1	1	1
Car	1	0	0	0

Key: Q1_09



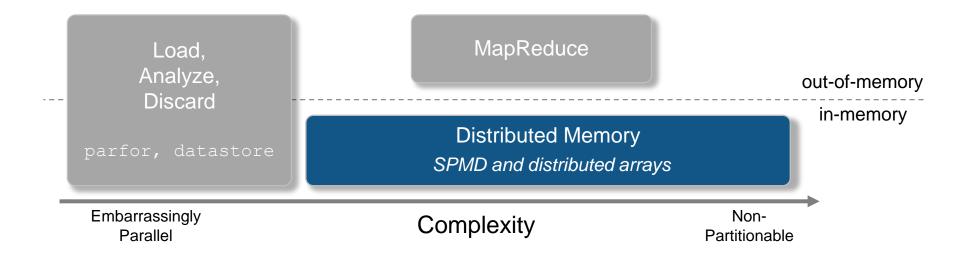
The Big Data Platform



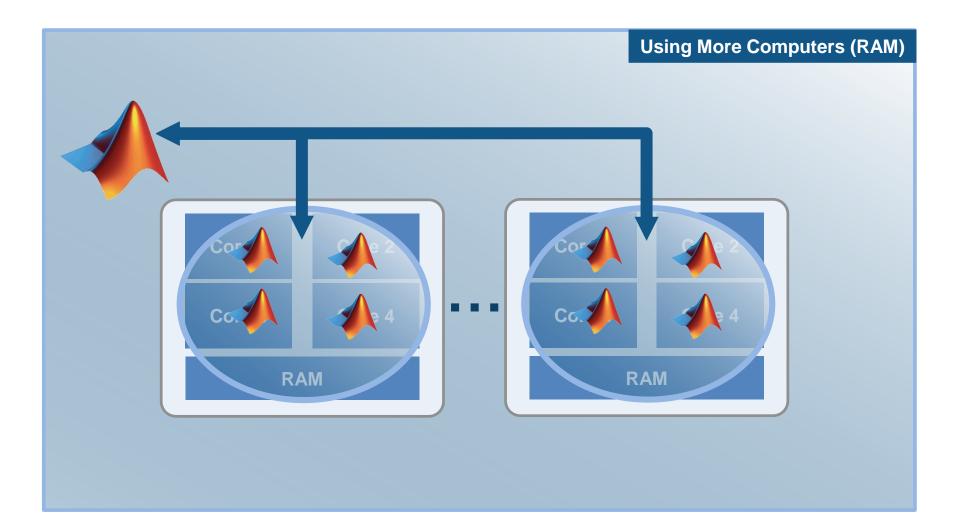
Explore and Analyze Data on a Cluster

Deployed mapreduce

When to Use mapreduce


Data Characteristics

- Text data in files or stored in the Hadoop Distributed File System (HDFS)
- Dataset will not fit into memory
- Compute Platform
 - Desktop
 - Traditional HPC cluster R2015a
 - Hadoop cluster (within Hadoop MapReduce framework)
- Analysis Characteristics
 - Must be able to be partitioned into two phases
 - 1. Map: filter or process sub-segments of data
 - 2. Reduce: aggregate interim results and calculate final answer

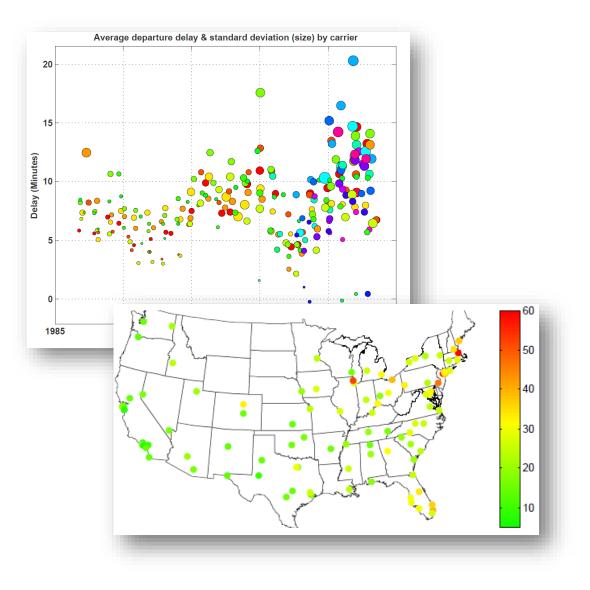


Techniques for Big Data in MATLAB

Parallel Computing – Distributed Memory

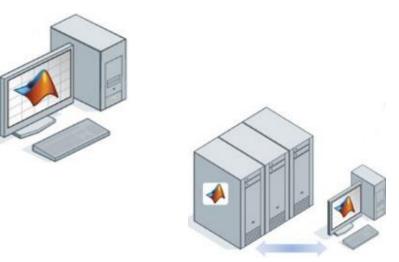
spmd blocks

spmd % single program across workers end

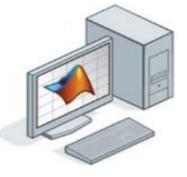

- Mix parallel and serial code in the same function
- Run on a pool of MATLAB resources
- Single Program runs simultaneously across workers
- Multiple Data spread across multiple workers

Example: Airline Delay Analysis

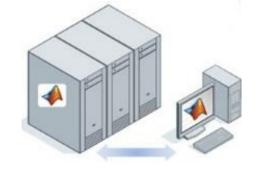
Data


- BTS/RITA Airline On-Time Statistics
- 123.5M records, 29 fields
- Analysis
 - Calculate delay patterns
 - Visualize summaries
 - Estimate & evaluate predictive models

When to Use Distributed Memory


- Data Characteristics
 - Data must be fit in collective memory across machines
- Compute Platform
 - Prototype (subset of data) on desktop
 - Run on a cluster or cloud
- Analysis Characteristics
 - Consists of:
 - Parts that can be run on data in memory (spmd)
 - Supported functions for distributed arrays

Big Data on the Desktop


- Expand workspace
 - 64 bit processor support increased in-memory data set handling
- Access portions of data too big to fit into memory
 - Memory mapped variables huge binary file
 - Datastore huge text file or collections of text files
 - Database query portion of a big database table
- Variety of programming constructs
 - System Objects analyze streaming data
 - MapReduce process text files that won't fit into memory
- Increase analysis speed
 - Parallel for-loops with multicore/multi-process machines
 - GPU Arrays

Further Scaling Big Data Capacity

- MATLAB has a range of programming constructs for clusters
- General compute clusters
 - Parallel for-loops: embarrassingly parallel algorithms
 - SPMD and distributed arrays: distributed memory
 - MapReduce: process big text files
- Hadoop clusters
 - MapReduce: analyze data stored in the HDFS

Use these constructs on the desktop to develop your algorithms

Migrate to a cluster without algorithm changes

Learn More

- MATLAB Documentation
 - Strategies for Efficient Use of Memory
 - Resolving "Out of Memory" Errors
- Big Data with MATLAB
 - <u>www.mathworks.com/discovery/big-data-matlab.html</u>
- MATLAB MapReduce and Hadoop
 - <u>www.mathworks.com/discovery/matlab-mapreduce-hadoop.html</u>

Big Data with MATLAB

How to work with huge and fast data sets

Big data refers to the dramatic increase in the amount and rate of data being created and made availa analysis.

A primary driver of this trend is the ever increasing digitization of information. The number and types o acquisition devices and other data generation mechanisms are growing all the time.

Big data sources include streaming data from instrumentation sensors, satellite and medical imagery, from security cameras, as well as data derived from financial markets and retail operations. Big data s these sources can contain gigabytes or terabytes of data, and may grow on the order of megabytes or gigabytes per day.

MapReduce on the Desktop

Explore and analyze big data sets on your desktop with the MapReduce programming technique built into MATLAB.

Creating algorithms using MapReduce: max, mean, mean by group, histograms, covariance and related quantities, summary statistics by group, logistic regression, tall skinny QR

- » Get started with MATLAB MapReduce
- » MapReduce design patterns
- » Use MATLAB MapReduce with relational databases

MapReduce on Hadoop

Execute MATLAB MapReduce based algorithms within Hadoop MapReduce to explore and analyze data that is stored and managed on Hadoop, using MATLAB Distributed Computing Server.

» Run MATLAB MapReduce on Hadoop

Create applications and libraries based upon MATLAB MapReduce for deployment within production instances of Hadoop, using MATLAB Compiler.

» Deploy MATLAB MapReduce applications to Hadoop