Using MDE for an Airborne FPGA Application

Who are we?

- Eddie Power Hardware Engineering Manager
- Tom Pitchforth Hardware Engineer
- Alison Lucie Senior Systems Engineer
- from SELEX Sensors & Airborne Systems in Edinburgh, UK.

High Technology Defence Electronic Systems

- Majority of products contain custom in-house designed hardware.
- Into FPGAs in a big way approx 50+ designs live at any time -
 - SRAM, Flash and Anti-fuse
 - From 10K gate rad hard for satellites to multi-million gate Virtex.
- Model Driven Engineering for targeting to FPGA now becoming mainstream for processing intensive applications.
- Preferred MDE toolset Matlab/Simulink to FPGA via XILINX System Generator.

•FMMs for Targeting Pod -Started as MEng Project to replace Analogue Controllers. -Nallatech based prototype proved Controller Concept and MDE Implementation. -Pod will fly with two custom controllers (WFoV and Steering Mirror). -Papers on Mathworks web & in US COTS Journal.

-Presented at MDE UK 2005

"Bloody fantastic: analogue speed without analogue uncertainty, software capability without software overhead, rapid prototype without proprietary hardware." - Steve Gifford, Chief Systems Engineer

Tools are reasonably stable and usable in <u>real</u> applications Extension to existing design flow, not replacement. Complete end-to-end tool chain. Bolt-in to existing FPGA tools (Modelsim, Precision, P&R). Means of integrating design disciplines into common design env.

Big savings to be made by removing intermediate specification production and interpretation stage, reducing integration time and speeding-up design iterations.

•RF Datalink

•RF Receiver Digitizer

- •Image Processing -Autofocus Target Detection Image Stabilization/Enhancement (7+ algs)
- Tools & process well embedded across patch.

System Generator Design Flow

Higher thinking.

Project Objectives

• Current uP based design

- PC-104+ uP board and power card
- Linux Operating System
- 1 second to process sub-sampled 11Mpixel image
- Intensity and size based filter

• Convert Current uP design to an FPGA based design

- Relieve uP of main processing task
- Reduce operating temperature of uP
- Do not increase power consumption
- Less than 1 second to process 11Mpixel image
- Provide algorithm with equivalent/better processing results
- Proposed FPGA based design
 - Nallatech PC-104+ FPGA board and power card

Image Processing System

Design Process

- Matlab
 - High Level Script

• Simulink

- Floating Point Model
- Fixed Point Model
- Xilinx System Generator
 - System Generator Model
- HDL Designer Pro
 - VHDL based Wrapper for FPGA design
- Nallatech DIMETalk
 - PCI interface and FPGA design
- Nallatech FUSE for Matlab
 - API functions to DMA data to/from FPGA card

Design Procedure

- High level Matlab scripting
 - Rapid implementation to create reference design
 - Matlab scripts used in test-bench to perform additional tests

High level Floating-Point Simulink models

- Gradually broken down to simpler models
- Enables easier translation to FPGA model
- Lower level Fixed-Point Simulink models
 - Quickly shows any differences between fixed-point and floating-point Models
- Xilinx System Generator Model
 - Can easily be tested alongside Fixed-Point Model to show differences
- Hardware In the Loop (HIL) models used to target FPGA card
 - Will indicate if there any discrepancies between theoretical FPGA model and actual hardware
- HDL Designer Pro Wrapper
 - Combines all Sys Gen 'black boxes' and can be simulated using Modelsim
- DIMETalk Network
 - Provides PCI interface and potential multi-FPGA networks
 - Easily accessed from Nallatech API functions
- FUSE for Matlab
 - Matlab equivalent of Nallatech C/C++ API functions
 - Allows main software to be created & tested in Matlab using the hardware

2D-FFT DEMO

- 1. Section image so any image size is supported
 - Calculate useable region
 - Calculate each section
 - Ensure final section is correct size
- 2. DMA section to FPGA from uP
- 3. Read back results for the current section
- 4. Repeat steps 2 & 3 for every section
- 5. Create detection table using results
- 6. Return detection table to main program

DEMO

Actual Results

ATD_Reg	istratio		D BDCA						
Using H ATD Reg	Using HID Higorithm HID_FPGH ATD Registration complete								
Opening Configu Closing	Opening FPGA Card Configuring the FPGA Closing FPGA Card								
ATD Initialisation Configuring the FPGA ATD Initialisation complete									
# Processing Image ID 50									
Total image transfer time = 0.451000 s									
Total image sectioning time = 0.020000 s									
atd_algorithm execution time = 0.451000 s									
# ATD Found 8 detections in image ID 0									
Obj ID	Img ID	ţ1x	tly	brx	bry	area	ndet	MatchVal	
1	6	6 599	1434	234 005	1472	8731 AE916	88	1.406250	
2	е 0	1228	632	005 1404	2130	15220	-10 50	1 480469	
4	й	1998	1807	2144	1869	9261	30	1.179688	
5	ø	2193	578	2379	643	12342	29	1.117188	
6	Ø	2492	1251	2604	1275	2825	34	1.320313	
2	Ø	3207	689	3370	791	16892	36	1.281250	
8	Ø	3503	1409	3658	1442	5304	55	1.410156	
press <return> to exit.</return>									

****Small difference due to Floating-Point Vs Fixed-Point**

13/06/2006

- 6 months for implementation & delivery (1 HW & 1 Systems Engineer)
 - Card selection & initial hardware concepts 1 month
 - Algorithm development & test (Matlab/Simulink) 3 months
 - FPGA targeting & testing (HDL DP, DIMETalk, FUSE) 2 months
 - Optimisations & delivery 1 month
 - **Only 2 days required to translate FUSE code to ANSI C code
 - Less than 1 day to integrate into full system

	Detection > 90% (% test imagery)	FAR > 1 (% test imagery)
Customer	73	74
Selex-SAS	91	5

Algorithm Performance

- Power consumption only slightly higher than previous system
 - uP relieved of main processing task, so no longer running 'white hot'
 - uP consuming less power
 - Only 48% of FPGA utilised
- Processing Results
 - Processing time of 350mS (LINUX) and 350mS (Windows)
 - 95% of which is DMA transfer time
 - uP equivalent processing time of 9000mS FPGA was approx 30 times faster !!

- Project initially accepted on 'best endeavours' terms due to extreme timescales
 - Final product exceeded all expectations mainly due to the adopted design process
- Process resulted in Systems, Hardware & Software Engineers working closely
 - Quick turn around of requested design modifications
 - Programmable sensitivity parameters implemented in less than 1 day
 - Classification software designed in Matlab & compiled into dll format within 2 weeks
- Team of engineers more aware of constraints on other disciplines during design process
 - Same process has now been adopted for a much larger project on very tight timescales

Benefits of MDE flow

- Executable specification removes errors introduced by interpretation of requirements, cuts development time.
- Removal of "over-the-wall" approach resulting in better, faster communication between disciplines.
- Fast design iterations (e.g. effects of varying precision etc.).
- Direct correlation between simulation results and "real-world" performance
- •Powerful device verification capability.
- Comprehensive system modeling environment.
- Raising the abstraction level reduces obsolescence issues.
- Expands skill set of all involved

- Wouldn't have taken on Image Processing projects without access to the tools.
- Lots of effort has been put in to get to "push button" stage.
- Lots of support from vendors (e.g. XILINX for autofocus).
- Worth the effort now reaping rewards.
- "Autocoding" sell tool on this basis to mgmt (verification is real benefit).
- All trad FPGA issues still there Sync, timing, EMC, power cons, cooling.
- Still need HW & Systems & SW guys (work in same env with sensible overlap).
- Integrated tool-set expands horizons of all team members.

