

Modeling Complex Systems Using SimEvents

Giovanni Mancini SimEvents Product Marketing Manager The MathWorks

Topics

- Discrete Event Simulation
- SimEvents Components
- System Example

What is SimEvents?

- SimEvents provides a natural, efficient way of modeling systems that are *activity-based* versus systems that are purely continuoustime based
 - Systems can be modeled at the transaction level
 - Model semantics are primarily activity- or event-based
 - Untimed means no explicit notion of time is needed
- SimEvents adds Discrete Event Modeling (DES) to Simulink[®]
 - DES and continuous time are integrated

Modeling A Hybrid System: Golf!

- Tee is available
- You tee off

SimEvents

- Situation determines action
- Club selection

Stateflow[®]

Trajectory of the ball

Simulink[®]

Hybrid System: Communication System

What does SimEvents give you?

- Model systems requiring access to a shared resource
- Model systems that selectively route data and items through blocks
- Model systems that are activity-based rather than time-based

MATLAB[®] & SIMULINK[®]

What is the relationship with Simulink?

What is the value of SimEvents?

Model is adapted to the level of complexity required!

Engineering Roles

System Architect

Fhe MathWorks

- Analyzes system features and applications before committing to a final choice
- System Engineer
 - Models system features and applications mapped onto a selected implementation
- Module Developer
 - Verifies that module(s) deliver the required feature subset while meeting performance requirements imposed by the rest of the system

Roles with SimEvents

- System Architect
 - Models system functions without having to worry about detailed timing
- System Engineer
 - Evaluates the robustness of the chosen implementation:
 - Timing
 - Discrete event behavior
 - With other implementation details
- Module Developer
 - Verifies module behavior and performance in the presence of real world uncertainties associated with
 - Timing
 - Non-periodic or discrete behavior
 - System loading

MATLAB[®] SIMULINK[®]

Typical Applications

- Mission planning
- Logistics
- Packet-based communications
- Base station access
- RTOS modeling
- Supervisory and distributed control
- Manufacturing systems
- Service scheduling
- Etc.

SimEvents Key Features

- Libraries
 - Queues
 - Servers
 - Switches
 - Gates
- Generators
 - Entities
 - Events
 - Signals
- Automatic statistics gathering
 - Delay
 - Throughput

- Enables evaluating a system with a given set of delay and throughput conditions
- Statistic gathering simplifies locating bottlenecks in the system
- Supports hybrid simulation of models containing eventbased and time-based execution components

SimEvents Components

- Entities and attributes
- Queues and servers
- Routing entities
- Accessing statistics
- Interfaces with Simulink and Stateflow

Entities and Attributes

- Entities
 - Abstraction of something in the simulation (i.e., packet or a token)
 - Move through queues, servers, gates, and switches
- Attributes
 - Data carried by entities (i.e., length, dest. address)
 - Model a range of vertical applications

Queues and Servers

- Queue/Server pair creates delays and storage locations for entities
 - Setting service time of server enables you to model bank teller, machine, packet delay
 - Setting capacity of queue enables you to model waiting in lines, buffers, packet storage
- Blocking: Entities advance only when there is a place to go
- Event Priorities: Control of execution order of simultaneous events

Routing Entities

Various network topologies can be created:

- Merge entity paths
- Select entity from input path
- Select output path for entity
- Replicating entities

Statistics Library

Statistics and block state can be accessed through various blocks by means of output signal ports:

- Entities departed
- Entities in block
- Entity delay and average delay
- Utilization
- Pending entity (blocking status)
- Timer blocks end-to-end delays
- Number of events

Interfacing with Simulink and Stateflow

Function-calls, triggers (and value change) allow interfacing between SimEvents and Simulink and Stateflow:

- SimEvents controls StateChart
- StateChart controls SimEvents block

Continuous Time versus Discrete Event

- Simulink Time advance happens at regular intervals
 - **Simulink Counter**

The MathWorks

SimEvents – Time advance is controlled by the event activity

SimEvents Counter

SimEvents provides a more efficient execution flow because blocks are evaluated only when they need to be!

Comparison of Routing Policies

Shortest Queue Routing

MATLAB[®] SIMULINK[®]

Routing Block

Shortest Queue Routing

Comparison of Routing Policies

Shortest Queue Routing

SimEvents

- Provides a natural, efficient way of modeling activity-based systems versus systems that are purely continuous-time based
 - Systems can be modeled at the transaction level
 - Model semantics are primarily activity- or event-based
 - Untimed no explicit notion of time is needed
- Adds Discrete Event Modeling (DES) to Simulink
 - DES and continuous time are integrated
 - Asynchronous and discrete event behavior
 - Delays
 - Queuing
 - Routing
 - Priority and preemption
- Models systems requiring access to a shared resource

Applications of SimEvents

- Mission planning
- Logistics
- Packet-based communications
- RTOS modeling
- Base station access
- Supervisory and distributed control
- Manufacturing systems
- Service scheduling

Modeling Complex Systems Using SimEvents

