

DEFINING THE FUTURE

Standard Tools for Hardware-in-the-Loop (HIL) Modeling and Simulation

2008 Mathworks Aerospace and Defense Symposium

April 2, 2008

ntelligen

Unveillande and

Robert McNeal and Dr. Mohamed Belkhayat Technology Development Engineers Northrop Grumman Corporation

HIL Modeling and Simulation

Hardware-in-the-Loop (HIL) Simulations involve the integration of validated system simulations and prototype hardware.

Areas of Integration

- Communication between Hardware and Computer models
 - computer models simulate system dynamics and inputs into the hardware
 - Hardware outputs response signal back to the computer model
- Simulation synchronization
 - Real-Time Simulation

THROP GRUMMA

Hardware – SEL 300G Protection Relay

Hardware in the Loop:

- Schweitzer Engineering Laboratories (SEL) 300G
 Generator Protection Relay
 - Provides power protection
 - Detects 3- or 4- wire potentials, and 3 phase current
 - Voltage Input Range: <u>+</u> 10V
- The generator computer model was wired directly into the processing module via a low level interface.

Data Acquisition – Sound Card

Integrated Sound Card – Analog I/O

- 2 Channels Input, 2 Channels Output (Stereo)
- Sample Rate: 48 kS/s
- Voltage Output Range: <u>+</u> 2V
- Frequency Range: 10 20000 Hz

PCI Sound Card – Analog I/O

- 2 Channels Input, 5 Channels Output (Stereo)
- Sample Rate: 50 kS/s (approximately)
- Voltage Output Range: <u>+</u> 14V
- Frequency Range: 10 50000 Hz

Copyright 2006 Northrop Grumman Corporation

System Configuration w/ Sound Card

Copyright 2006 Northrop Grumman Corporation

4

Computer Model w/ Sound Card

Relay Data w/ Sound Card

Sound Card Interface

Pro

- Availability Standard in Computers
- Inexpensive

Con

- Limited I/O ports Two Channels (Stereo)
- Limited Data Type Analog only
- Limited fidelity 16 bit data
- Simple Standardized Tool for I/O interface

Data Acquisition – Dedicated I/O Card

National Instruments Data Acquisition (NIDAQ) Card

- NI PCI-6733
- Analog Output (No Input)
 - 8 Channels
 - Voltage Range: <u>+</u> 10V
 - Update Rate: 1MS/s
- Digital I/O
 - 8 Channels, TTL Logic
 - Voltage Range: <u>+</u> 5V

System Configuration w/ NI DAQ Card

Copyright 2006 Northrop Grumman Corporation

HIL Timing Diagram

Computer Model w/ NI DAQ Card

Copyright 2006 Northrop Grumman Corporation

4/17/2008 2:20 PM HEADER / FOOTER INFORMATION (ADD PROPER CLASSIFICATION)

Computer Model Data w/ NI DAQ Card

- Simulation Time Step: 10 μs
- Bolted Fault @ 0.25s ~ 10 cycles
- Clears fault immediately
 Closes Breaker in 25ms later
- Switch bouncing can be seen
- Detects fault at 1.5pu overcurrent

Relay Data w/ NI DAQ Card

Interface – w/ NI DAQ Card

Pro

- Numerous I/O ports
- Analog and Digital Data support
- High Fidelity rate (1Mb/s or better)
- Current controlled I/O ports available

Con

- Expensive
- Not standard in Computers Add-on PCI Card

Multi-port Interface for Control Simulation

Conclusion

- The relay in the HIL environment was able to receive Voltage and Current analog signals from the power system simulation running in a Simulink real-time environment.
- The relay acted on the signals as if the relay had been installed in an actual power system.
- The relay was able to communicate back to the Simulink simulation. (Closing the Loop)
- The simulation used the relay feedback information to control a virtual breaker and clear a fault.

Conclusions, Cont.

- For very simple HIL interface needs, a computer sound card can be used as a data acquisition tool.
 - For multiple signals, multiple sound cards could be used.
- For more complex HIL interface needs, a dedicated I/O card should be chosen.
- Windows Real-Time Target simulation environment is necessary for this HIL testing.
- Next stage is to use xPC target, as it is completely independent of windows.
- HIL provides a cost effective method of testing prototype hardware with standard tools.
 - Simulink/MATLAB real-time environment
 - Desktop Computer/PC
 - Data Acquisition Card
 - Sound Card
 - Dedicated I/O Card National Instruments DAQ

Questions

Copyright 2006 Northrop Grumman Corporation

4/17/2008 2:20 PM HEADER / FOOTER INFORMATION (ADD PROPER CLASSIFICATION)