

Using **Computational Thinking** to foster learning curiosity

Brad Horton Engineer MathWorks

© 2017 The MathWorks, Inc.

Computational Thinking

tional thinking is refo

2006

"Computational Thinking is the thought processes involved in formulating problems and their solutions ... in a form that can be effectively carried out by an informationprocessing agent." - Cuny, Snyder, Wing

Characteristics of Computational Thinking:

Decomposition

Break 1 complex problem into a collection of smaller/simpler problems

Abstraction

Mathematical modelling

- Symbolic representation
- Block diagrams

Algorithms + Automation Formulating solution as a series of steps

Transforming between Modelling paradigms

Simulation

What happens when ?

From this

To this

Motivate me.

these concepts

Demo

Using Computational Thinking and MATLAB to foster learning curiosity

MathWorks[®]

Student's desires:

- How does what I already know:
 - Extend to NEW things
 - Scale from simple to complex things
- I do NOT want to do boring things

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = Q_k \qquad \text{where} \qquad Q_k = \sum_{i=1}^{N_{nc}^i} \left(\overrightarrow{F_i}, \overrightarrow{\frac{\partial v_i}{\partial \dot{q}_k}} \right) + \sum_{j=1}^{N_{nc}} \left(\overrightarrow{\tau_j}, \overrightarrow{\frac{\partial \omega_j}{\partial \dot{q}_k}} \right)$$

where

Background:

- is the system Lagrangian, ie: L = KE PE • L
- is the kth generalised co-ordinate
- Q_k is the generalised force associated with the kth generalised co-ordinate a.
- Nf_{nc} : is the number of active NON conservative forces
 - is the number of active NON concervative TOD/

Solution pathway

Professor's desires:

- I do want my students to:
 - focus on the science/engineering

MathWorks[®]

9

- Think, explore, build

- 2. Apply the governing physics
- 3. Apply Lagrange's equation
- 4. Isolate our expression for M, C, K, g, Q
- 5. Convert our Analytical expression for M, C, K, g, Q into a Simulink block
- 6. Simulate of model of this dynamic system

Euler-Lagrange equations:

The Euler-Lagrange formula will be used to derive the equations of motion for our robotic manipulator, and it has the form

> $\frac{d}{dL} \frac{\partial L}{\partial L} - \frac{\partial L}{\partial L} = Q_k \quad \text{for} \quad k = 1, 2, \dots, n$ dt dà. da

where n is the DOF of the system, $\{q_1, q_2, ..., q_n\}$ is a set of generalized coordinates, $\{Q_1, Q_2, ..., Q_n\}$ is the set of generalized forces associated with those coordinates, and the Lagrangian: L = T - V, is defined as the difference between the kinetic and potential energy of the n-DOF system. The Generalised forces can also be defined in terns

How is Computational Thinking Introduced ?

Computational Thinking

Do students just "pick up" computational thinking?

VS

VS

Math Skills

Isn't math taught systematically and reinforced throughout the curriculum?

How Math is introduced in the curriculum

How is Computational Thinking introduced?

Fostering a Curiosity to Learn:

- There is a pathway from simple to complex problems
- Tedium is reduced.
- Spend more time thinking about the core science.