Modeling and Simulating Large Phased Array Systems

MATLAB EXPO 2017

Tabrez Khan Senior Application Engineer Application Engineering Group

Challenges with Large Array Systems

- Design & simulation of multi-stage, multi-channel RF chains
- Large antenna arrays
 - Antennas need to be close together to avoid grating lobes
 - Digital beamforming can be complex and power hungry (BW x N_T , many ADCs)
 - Analog beamforming has limited capabilities
- Array structures are complex
- Design & simulation of multi-function, multi-domain systems

Agenda

- RF budget analysis and performance simulation of large arrays
- Partition beamforming between the digital and RF domains
- Antenna & array design
- Integrate antenna and array designs in system level models
- Summary

Project Requirements

- Requirements review
- Build large size transmit array models
- RF budget analysis and performance simulation
 - Gains of TX array and individual channels
 - Gain variations and array radiation pattern
 - Non-linearity via two-tone test
 - Phase noise and other RF impairments

. 66								d Pelante	an he he	a int					
	new manufactor						U tann								
-	line - Rither					Nage Taol Margar B Car			- 54.8	E	(P) Taxe	2		E	2. Sept.
1	thent is had				August 1		4	-	1		Inda.		2343		
43	1 1 1 1 1 A 1 A 1 A	increase of	0.044												
2		1.	1	101	1		1.0		1.1	11.11	14	1	1.161	1.16	1.10
		(and the second	er Links M		Intelle CA	als forts 1	often Mill?			Complete	at Latera	and Property	14000	Galaxy.	Property \$18
10.0	Transmy Kitte	1.14	1.18			1.100		1		1000	1.1	1000	1000	1.1	2 2
	lag-at							1.1						19.8	21.0
4	BT standing popert splitt	44	43	44	- 18	4.4	4.6	44	40	14.4	AnA .	19.0	444	18.8	34.0
	#1 manifold in line loss	2 10000	-1 00088	4.10800	-8	- 41	-8.5	.41	49	14.4	184	No.	-498	13.1	
	4:1 manifold distates icon	-2.0	2.00	4.86	10	4.5	45	45.	#3	16.4	104	Dia.	-214	112	94.8
T	filler	-458	.419	45.6	- 18	.416	-16.6	214	48	15.4	NM-	10.8	400	12.6	15
10	Maathold, Jenge	11	11	12	-8	38.1	-17.8	-21.4	45	4.95	4.95	-0.53	-000	- 4.3	-2.9
	41 mailfold powert spill.	44	40	-44	18	- 46.7	254	-25.4		14.10	Apa,	HAL	- ENV	17.2	-2.6
100	#1 manifold to line biox	-0: 10000	-0.0000	6.10000	- 18	111	11.0	-26.3	49	14.16	104	HIN.	-499	37	24
11	-init manufacted situations invo-	38	-2.6	1.00	18	312	314	-29.9	40	55.	NM.	164	-894	4.7	
16	filter.	.4.86	4.05	1.10	- 18	-36.2	-30.8	-38.9	#5	15.96	ABA.	NA.	-0000	-45.2	-453
78	Manifold Area 2	6.6	3.5	12	18	26.8	32.6	34.6	44	-1/0	4.46	0.63	-600	-4.1	16.9
14	Adventite Intel Average 2	14	4.5	84	-18	312	111	-28.1	45	1.11	1.10	4.90	-498	-12	1.1
-01	Manifold Arren 2	6.7	3.8	÷π.	.48	-214	-16.7	-18.1	49	1.0	4.95	-0.00	-200	101	-4.8
18	B3 manifold power split	48.	44	44	-18	26.1	42.5	- 26.1	48	14.16	106	NK.	- 400	-44	- 24
17.	44 manifeld Line loss	-0 50000	10,00000	3.5000	105	28.8	49.2	-29.6	65	(5.0)	- 104	16.5	488	3.7	-75
18	4ct maraffold dikider loss	-24	-10	1.00	- 60	-28.5	45.2	27.6	#2	64	NA.	NA	300	-47	8.5
16	Mater	一位目	-10.00	-0.00	- 18	-411	412	38.4	1.49	14.4	104	NA.	1000	417	
- 26	Front and Rear	4.4	44	- 61	18		-35.5	-33.9	45	1.0	1.10	16.81	.4994	35.4	15.9
31	Frank and Amp	82	6.8	0.9	18	-29.4	-26.8	27.9	-65	0.5	4.95	-0.01	-1004	10.1	-8.1
32	Frield-mod-blog-	1.00	7.5	1.1	- 18	-21.8	464	-28.0	10	-1.12	4.6	-0.01	1000	4.3	-18
28	Radiatory/cent.Det	-6.44	3.00	0.08	-18	244	20.4	-23.0	45	16.6	NA	THE.		-0.3	-48
34															
12															

Budget Analysis with RF Budget Analyzer

📣 RF Budget Analyzer - rfbudget_chan1								_		\times
ANALYSIS						2 - 2	- 🖪 🖬 🏑	669¢	C ?	• 🔺
New Open Save FillE DELETE	Odulator S-parameters Generic ADD ELEMENTS	Export EXPORT								
System Parameters Input frequency: 100 MHz Available input power: 20 dBm Signal bandwidth: 10 MHz		G NF IP3 Modulator Generic	G NF IP3 Generic	G NF IP3 Generic	G NF IP3 Generic	G NF IP3 Generic	G NF IP3 Generic	G NF IP3 Generic]	
Element Parameters Generic Name: Generic	Stage GainA (dB) NF (dB) OIP3 (dBm)	1 2 0 -6 0 0	3 -0.1 0	4 -0.2 0	5 -0.7 0	6 5 0	7 6 0 60	8 5 0		
Available power gain: 6 dB Noise figure: 0 dB OIP3: 60 dB Input impedance: 50 Oh	m GainT (dB) m OIP3 (dBm) m OIP3 (dBm) m OIP3 (dBm) SNR (dB)	1 12 1100 1100 20 14 0 -6 0 0 Inf Inf 124 124	13 1100 13.9 -6.1 0 Inf 124	14 1100 13.7 -6.3 0 Inf 124	15 1100 13 -7 0 Inf 124	16 1100 18 -2 0 55 124	17 1100 24 4 0 57.46 124	18 1100 29 9 0 58.05 124		

Demo: Build Large Size RF Transmit Array

Programmatically

Specify the size of the array and click 'Run'

Z Editor - I	C:\Work\Seminars\SimRF\TX_Array_Project\Workflow\build_main.m	- 0	×
EDITOR	PUBLISH: VEW () HILLING () HILLING ()		0
New Open	Image: Prot + Image: Prot +<		
1 Cuild Spt	izunitum in build manum in build hannaymanum in build hannaymunum in annaykesponse Continuatum in build hannayhautorum in it		-
17 18 19 20 21	% build_main.m puts the RF networks into a subsystem % buildTTXArray_main.m does not hide the RF networks.		
22 23 - 24 - 25 - 26 27 28 - 29 - 30 - 31 - 32	%% Clean up clear; close all; clc; %delete 'TX_Array*six'; load_system('simrfV2elements'); load_system('simrfV2util1'); load_system('simrfV2sources1'); load_system('rfBudgetAnaiyzer_lib');		
33 34 35 36 37 38 - 39 - 40 - 41 - 42 - 43 - 44	%% Specify top level system parameters % Specify the size of the transmitter array sizeArray = 64; % Has to be >=4 and be a power of 2; filename = 'rfb_example.xisx'; sheet = 'RF Component Chain'; GHz = 1e9; InputFrequency = GHz * xisread(filename.sheet;'B2'); SignalBandwidth = 10e6; AvailableInputPower = 20;		
5	script La	32 Col	¥

Workflow (build large size transmit arrays)

• Step 1:

- Build basic RF component chain models from an excel sheet
- Introduce frequency dependent parameters, variations (randomness, e.g. gain), non-linearity, and other RF impairments, *if desired*
- Modify them manually *if necessary ('beautify' the models*), and form a library of basic RF models (stage units)

• Step 2:

- Build large size transmit array *programmatically* with basic RF models in the library and other Simulink and RF Blockset blocks
- Step 3:

- Build test benches around the transmit array *programmatically*

Perform budget analysis and performance simulation

Examples Steps 2 & 3 combined example Z Editor - C:\Work\Seminars\SimRF\TX_Array_Project\Workflow\build_main.m PUBLISH +2 buildSplitUnits.m 🛛 build_main.m 🗶 buildTXArrayRF.m 🗶 bu %% Specify top level system parameters 34 % Specify the size of the transmitter array 35 sizeArray = 64; % Has to be >=4 and be a power of 2; 36 -37 filename = 'rfb_example.xlsx'; 38 -39 sheet = 'RF Component Chain'; GHz = 1e9;40 -InputFrequency = GHz * xlsread(filename,sheet,'B2'); 41 -SignalBandwidth = 10e6; 42 -AvailableInputPower = 20; 43 --+(1) 44 %% load the pre-built tx array model 45 Step 2 delete 'txArrayRF.slx'; 46 -47 d = buildTXArrayFun(sizeArray); load_system('txArrayRF'); 48 -49 50 % Set a starting point in a blank model RF x = 20; 51 -Configuration 52 dx = 40;53 dy = 85; v = 200 + dv * sizeArrav/2;54 -20 RF (**-**+ SL Connection Port1 out fon fon Available Output power (dBm) dBm to Linear Thermal Noise TX Array RF Linear to dBm Inport input power (dBm) Subtract Transducer gain (dB)

11

Examine Gain/Power Levels

Introduce gain variation & examine array radiation pattern

Array radiation pattern and gain variation

• Examine non-linearity impact and introduce phase noise

Budget Analysis & Performance Simulation of Large Size Transmit Array

Use spectrum scope?

Phase shift of components?

• Two-tone test (Non-Linearity Analysis) and phase noise

Two-tone test and phase noise

Project Requirements- Workflow Solution

(((___)))

Export the basic RF channel built from an Excel spreadsheet in RF Budget Analyzer into Simulink/RF Blockset; Introduce the desired RF impairments into the model

Build a library of basic RF units from the single RF channel Simulink/RF Blockset model; Form multiple staged large size arrays from basic RF units programmatically

Further requirements

- Add power saturation for amplifiers
- Add power efficiency metric
- Add frequency dependency to the arrays

RF Budget Analyzer vs. RF Blockset

Analytical calculation vs. numerical simulation

Cascaded configuration vs. arbitrary topology

Formulas vs. dynamic multi-domain simulation (circuit simulator using circuit envelope technology)

(quantization noise, non-linearity, thermal and phase noise, and other RF impairments)

Partition beamforming between the digital and RF domains

Challenges Designing Massive MIMO Arrays for Systems

- Higher frequencies enable more antennas
 - mmWave band (28 GHz, 37 GHz, etc...)
 - Large number of antennas, 32, 64,
- Large antenna arrays
 - Needed to provide more beamforming gain to overcome the path loss
 - T/R module is needed behind each element
 - Architecture is difficult to build due to cost, space, and power limitations

What is Hybrid Beamforming?

- Beamforming implemented part in the digital and part in the RF domain
 - Trade-off performance, power dissipation, implementation complexity
- Subarrays contain RF channels with phase shifter
- Digital beamforming performed on signals outside subarrays

Example: System Architecture for Hybrid Beamforming

- The transmitter uses a larger array to perform beamforming towards the receiver
- The receiver estimates the direction of arrival with small orthogonal arrays and communicates it to the transmitter

Example: Hybrid Beamforming Transmitter Array

- 4 subarrays of 8 patch antennas operating at $66GHz \rightarrow 8x4 = 32$ antennas
- Digital beamforming applied to the 4 subarrays (azimuth steering)
- RF beamforming (phase shifters) applied to the 8 antennas (elevation steering)

25

RF Front End Modelling using Circuit Envelope

- Direct conversion to IF (5GHz) and superhet up-conversion to mmWave (66GHz)
- Non-linearity (e.g. IP2, IP3, P1dB)
- Power dividers (e.g. S-parameters)

PhaseShift

[8x1

Antenna and Array Design

Easier Antenna Design with Antenna Toolbox

- Design is easy and natural
 - Library of parameterized antenna elements
 - Functionality for the design of antenna arrays
 - CAD description streamlined
- Rapid simulation setup
 - Full Methods of Moments solver employed for ports, fields and surface analysis
 - No need to be an EM expert
- Seamless integration
 - Model the antenna together with signal processing algorithms
 - Rapid iteration of different antenna scenarios for radar and communication systems design

Building your First Antenna and Antenna Array

```
p = patchMicrostrip
p.Height = 0.01;
impedance(p, (500e6:10e6:2e9));
current(p, 1.7e9);
pattern(p, 1.7e9);
```

```
a = linearArray
a.Element = p;
a.ElementSpacing = 0.1;
a.NumElements = 4;
show(a);
patternElevation(a, 1.7e9,0);
```


What if my Antenna is not in the Library?

- Define the boundary of your custom planar (2D) structure
 - Basic shapes: rectangle, circle, polygon
 - Operations: intersection, union, difference
- Define the feeding point (inset or probe)
- Integrate your custom antenna
 - Define a backing structure
 - Define a dielectric structure
 - Build an array with custom elements

View Insert Tools Desktop Window Help 🗋 🖆 🛃 🌭 | 🔍 🤍 🖑 🗐 🐙 🔏 - | 🛃 | 🗖 📰 | 🖿 🖽

Figure 3

File Edit

Ē N 0.3

- plate = antenna.Rectangle('Length', 0.16, 'Width', 0.16);
- = antenna.Circle('Center', [0, 0.06], 'Radius', .06); notch1
- notch2 = antenna.Rectangle('Length', 0.15, 'Width', .005);
- = plate-notch1-notch2; b

What if I Need to Customize my Array?

- Build regular arrays where you can change the properties of individual elements (rotation, size, tapering)
 - Linear, Rectangular, Circular array
- Describe conformal (heterogeneous) arrays in terms of element type and arbitrary position
 - Conformal array (both balanced and unbalanced)
- Arbitrary shape designed with custom geometry or mesh

```
arr = conformalArray;
```

```
d = dipole;
```

b = bowtieTriangular;

arr.Element = {d, b};

arr.ElementPosition $(1,:) = [0 \ 0 \ 0];$

arr.ElementPosition $(2,:) = [0 \ 0.5 \ 0];$

What if my Array is Really Large?

- Infinite Array Analysis
 - Repeat unit cell (Same Element) infinitely
 - Impedance and pattern become function of frequency and scan angle
 - Ignore edge effects
 - Captures mutual coupling
- Validate with full wave simulation on smaller arrays

Scan Impedance @10GHz

Odeg Azimuth

45deg Azimuth 90deg Azimuth

Scan Impedance Odeg Azimuth 45deg Elevation

Power Pattern

Increasing the Efficiency of the Antenna Design Workflow

Modelling the dielectric substrate can slow down analysis time:

- Use antennas in free space for first-cut design
 - Combine with optimization routines to rapidly find out a suitable starting point
- Use parallel computing to speed up design space exploration

Array Synthesis from a Desired Pattern

Array Synthesis from a Desired Pattern


```
Beam d = abs(weights d'*stvmat);
```


0.0478 0.1514 0.3843 0.5714 0.5718 0.3851 0.1519 0.0480

Integration of Antenna Array with Spatial Signal Processing Algorithms

Combine Antenna Design and Phased Array Algorithms

- You can integrate your antenna in Phased Array System Toolbox array objects
 - Use the accurate far field (complex) radiation pattern of the antenna
- Phased Array System Toolbox provides algorithms and tools to design, simulate, and analyze phased array signal processing systems
 - Beamforming, Estimation of Direction of Arrival
- Uses pattern superposition to compute the array pattern

Accelerate Algorithm Execution

- Use Best Practices in Programming
 - Vectorization
 - Pre-allocation
- Parallel Computing
 - High level parallel constructs (e.g. parfor)
 - Utilize cluster, clouds, and grids
- MATLAB to C
- GPUs

MATLAB & Simulink: Unified Design Platform

for baseband, RF, and antenna modeling and simulation

What's new in R2017cl?

Antenna Design – Where To Start?

Antenna Designer App

- Select an antenna based on the desired specifications
- Design the antenna at the operating frequency
- Visualize results and iterate on antenna geometrical properties
- Generates MATLAB scripts for automation

MathWorks

Coverage and Field Strength Visualization on Map

 Compute antenna pattern and visualize field strength projected on flat earth map

- Visualize antenna coverage on flat earth map and communication links
 - Define transmitter and receiver
 - Antenna design, frequency, power, and sensitivity

What's new in Phased Array System Toolbox

∽ R2017a

New Features, Compatibility Considerations

- Scattering MIMO Channel: Model multipath signal propagation through spatially spread scatterers
- Sonar Systems: Model hydrophones, projectors, underwater propagation, and targets
- Range and Doppler Estimation: Measure target range and speed

5G Beamforming and Spatial MIMO Channel

Scatterer MIMO Channel Model

- Generic model, applicable to all 5G bands and array sizes
- Multipath due to single reflection from multiple scatterers

Diagonalization Beamformer

- Precoding and combining weights
- Power distribution using water-filling algorithm
- Subchannel gains and channel capacity estimation

Examples

- Antenna Arrays in MIMO Communications
- MIMO-OFDM Precoding with Phased Arrays (with CST)
- 802.11ad Waveform Generation with Beamforming (with WST)

MathWorks^{*}

Source

80

100

60

Range (km)

Receiver

Bellhop Paths

Active and Passive Sonar Systems

Sonar Arrays and Targets

- Hydrophones
- Projectors
- Backscatter sonar target

Underwater Channel Model

Isospeed

Examples

1510 1530 1550 0

Munk Profile

Locating an Acoustic Beacon with a Passive Sonar

40

Underwater Target Detection with an Active Sonar¹

20

Summary:

- Trusted, diverse set of libraries and algorithms
- Fast simulations with scalable computing across CPU, GPU, and Clusters
- Unified modelling and simulation of digital, RF, and antenna systems
- Integrated platform for mathematical analysis, and algorithm, software, & hardware development

Call to Action

- Download whitepapers, technical articles and watch recorded webinars
 - Webinar: Design of wireless MIMO systems: from RF specifications to architecture exploration
 - Design and Verify RF Transceivers for Radar Systems
 - Wideband Radar System Design
 - Designing Antennas and Antenna Arrays with MATLAB and Antenna Toolbox
 - <u>Hybrid Beamforming for Massive MIMO Phased Array Systems</u>
 - Synthesizing an Array from a Specified Pattern: An Optimization Workflow

Do You Want To Learn More?

A MathWorks[®] | *Training Services*

Phased Array System Toolbox Fundamentals

This one-day course provides a comprehensive introduction to the Phased Array System Toolbox[™]. Themes including radar characterization and analysis, radar design and modeling and radar signal processing are explored throughout the course.

Topics include:

- Review of a Monostatic End-to-End Radar Model
- Characterize and analyze radar components and systems
- Design and model components of a radar system
- Implement a range of radar signal processing algorithms

A MathWorks[®] | *Training Services*

Modeling RF Systems with RF Blockset

Topics include:

- Introduction to RF simulation using MathWorks tools
- How do I model my RF system with RF Blockset?
- Importing S-Parameters and modeling linear operation
- Fundamentals of noise simulation
- Modeling non-linear devices
- Developing custom models

Accelerating the pace of engineering and science

Speaker Details Email: tabrez.khan@mathworks.in

Contact MathWorks India

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.

Thanks for your attention

Questions?