

Oil & Gas Production Optimization in MATLAB Leverage MATLAB's powerful solvers for tackling nonlinear optimization problems

Oscar Molina, PhD Sr. Applications Engineer MathWorks March 2024

Accelerating the pace of engineering and science

© 2024 The MathWorks, Inc.

For this analysis we will consider a four-pad multi-well production system producing oil, gas, and water simultaneously.

- Inflow Performance Relationship (IPR) and Vertical Lift Performance (VLP) data for each well are supplied via external simulation files.
- Downhole-to-surface conversion is performed over n-dimensional interpolating functions using an accelerated nonlinear solver.
- The goal of this use case is to establish a multipurpose, robust, and maintainable production optimization workflow in MATLAB.

Case 1. Maximize oil production while keeping gas production between 40 and 80 MMSCFD and water production at or below 1800 STB/day.

C)ptimizatio	n Model Summ	ary		
Pres	Pad 01 Pad 02 Pad 03 Pad 04	1453.99 800.00 1153.41 755.00	psia psia psia psia		
	Oil rate Gas rate Water rate	4625.61 80.00 1800.00	BOPD MMSCFD BWPD		
Per-	-pad / Per-1	well / Per-p	 hase Opti -+	mizatio	on Results
Pad (ID)	Well (ID)	Oil Rate (BOPD)	Gas R (MMSC	ate EFD)	Water Rate (BWPD)
1 1 1 1		49.48 100.16 173.04 151.98	-+ 0 2 4 4	.93 .74 .82 .24	13.78 150.73 234.25 243.54
2 2 2 2 2 2	1 2 3 4 5	158.71 258.41 181.22 322.54 291.84	4 7 5 5	.45 .25 .98 .66 .46	53.85 103.04 98.69 114.54 94.10
3 3 3 3 3	1 2 3 4	+ 137.35 69.89 85.51 75.45	3 3 3 3	.08 .00 .18 .81	45.24 23.34 38.03 33.05
4	+ 1 2	+ 450.61 417.22	-+ 4 5	.83	116.74 135.87

MathWorks[®]

MathWorks^{*}

Case 2. Maximize gas production while keeping water production at or below 1000 STB/day.

			1			
Opt	timizatior	n Model Summa	ry			
Pres 	Pad 01 Pad 02 Pad 03 Pad 04	2988.38 800.01 680.03 2296.07	psia psia psia psia			
Wa	Oil rate Gas rate ater rate	3054.18 61.81 1000.00	+ BOPD MMSCFD BWPD +			
Per-pa	ad / Per-v	well / Per-ph	ase Optimizat	ion Results	+	
Pad (ID)	Well (ID)	Oil Rate (BOPD)	Gas Rate (MMSCFD)	Water Rate (BWPD)	+	
1 1 1 1	1 2 3 4	0.00 0.00 26.03 24.62	0.00 0.00 0.71 0.68	0.00 0.00 34.79 38.99	+ <- Well <- Well 	shut-in shut-in
2 2 2 2 2 2	1 2 3 4 5	158.71 258.41 181.21 322.54 291.84	4.45 7.25 5.98 5.66 5.46	53.85 103.04 98.69 114.54 94.10	+ 	
3 3 3 3	1 2 3 4	226.22 110.10 147.72 117.60	5.08 4.75 5.53 5.99	74.42 36.73 65.58 51.46	+ 	
4 4 4 4	+ 1 2 3 4	+ 74.82 77.24 97.77 939.36	+ 0.79 1.08 1.04 7.36	+ 19.24 25.01 15.55 173.99	+ 	

4

MathWorks[®]

Case 3. Minimize water production while keeping gas production between 40 and 80 MMSCFD.

Opt	imizatior	n Model Summa	+ cy		
Pres 	Pad 01 Pad 02 Pad 03 Pad 04	3038.57 p 1130.70 p 680.00 p 4693.52 p	osia osia osia osia		
Wa	Oil rate Gas rate ater rate	1412.91 H 40.00 M 553.38 H	30PD MMSCFD 3WPD +		
Per-pa	ad / Per-v	vell / Per-pha	ase Optimizati	ion Results	-
Pad (ID)	Well (ID)	Oil Rate (BOPD)	Gas Rate (MMSCFD)	Water Rate (BWPD)	-
1 1 1 1 1	1 2 3 4	0.00 0.00 0.00 19.33	0.00 0.00 0.00 0.53	0.00 0.00 0.00 30.56	<- Well shut-in <- Well shut-in <- Well shut-in
2 2 2 2 2 2	1 2 3 4 5	105.92 153.89 116.16 194.61 170.35	2.97 4.28 3.83 3.41 3.18	35.98 61.47 63.29 69.24 55.01	-
3 3 3 3 3	1 2 3 4	226.22 110.10 147.72 117.60	5.08 4.75 5.53 5.99	74.43 36.74 65.58 51.46	-
4 4 4 4 4	1 2 3 4	0.00 0.00 0.00 51.00	0.00 0.00 0.00 0.44	0.00 0.00 0.00 9.63	- <- Well shut-in <- Well shut-in <- Well shut-in

- Outline and define production optimization problem
- Introduction to the Optimization Toolbox
- Prepare and set up optimization problem
 - Improving mathematical model with heuristics
 - Problem-based optimization workflow in MATLAB
- Deploying optimization models
- Key takeaways

- Outline and define production optimization problem
- Introduction to the Optimization Toolbox
- Set up and solve optimization problem with MATLAB
 - Improve mathematical model with heuristics
 - Problem-based optimization workflow in MATLAB
- Deploying optimization models
- Key takeaways

- 📣 MathWorks

The surface-to-downhole conversion part of the model is critical to solve the production optimization problem.

This case study considers production optimization of several multi-well pads interconnected via pipes and manifolds.

q = <oil rate, gas rate, water rate>

MathWorks[®]

📣 MathWorks[,]

This case study considers production optimization of several multi-well pads interconnected via pipes and manifolds.

General all-pads problem

 $\mathbf{q}_{t} = F(\mathbf{p}) = \sum F_{i}(p_{i})$

- Straightforward problem formulation
 - Supply pressure vector (input), get total rate vector (output)
 - Meant to answer direct questions like "how much will we produce if p = <p₁, p₂, p₃, ..., p_k>?"
- Inverse-problem formulation is quite difficult
 - Tightly coupled problem; *N*-degrees of freedom
 - Extremely challenging to answer "is there any p for which q equals...?"

 Seeks to solve questions like "what pressures do we need in order to maximize oil production while keeping water production between x and y?"

We can solve the all-pads optimization problem following a problem-based approach in MATLAB.

- Outline and define production optimization problem
- Introduction to MATLAB optimization products
- Set up and solve optimization problem with MATLAB
 - Improve mathematical model with heuristics
 - Problem-based optimization workflow in MATLAB
- Deploying optimization models
- Key takeaways

MathWorks Optimization Products

Optimization Toolbox

Functions for finding parameters that minimize
 or maximize objectives while satisfying constraints

Objective with single minimum

Global Optimization Toolbox

 Functions that search for global solutions to problems that contain multiple maxima or minima on smooth or nonsmooth problems (requires Optimization Toolbox)

Objective with multiple minima

MathWorks[®]

Optimization toolboxes support different problem types

	Optimization Toolbox	Global Optimization Toolbox
Faster	\checkmark	
Large Problems	\checkmark	
Better on:NonsmoothNoisyStochasticHighly nonlinear		✓
More "global"		\checkmark
Custom data types		\checkmark

Solving: Problem Types and Algorithms

- Simplex and interior-point
- Mixed-integer linear programming
 - Branch-and-cut
- Quadratic programming
 - Interior-point, active-set, trust-region
- Second-order cone programming
 - Interior-point
- Least-squares and nonlinear equations
 - Interior-point, trust-region, Levenberg-Marquardt
- Multiobjective optimization
 - Weighted and goal-attainment
 - Genetic algorithm
 - Paretosearch

Nonlinear optimization

Global Optimization Toolbox

Optimization Toolbox

- Nelder-Mead simplex
- Interior-point, SQP, trust-region
- MultiStart & GlobalSearch
- Pattern (direct) search
- Genetic algorithm
- Simulated annealing
- Particle swarm
- Surrogate optimization
- Mixed-integer nonlinear optimization
 - Genetic algorithm
 - Surrogate optimization

Optimization Decision Table

Solve many types of optimization problems with MATLAB

Optimization Toolbox *Global Optimization Toolbox*

	Objective Type					
Constraint Type	Linear	Quadratic	Least Squares	Smooth nonlinear	Nonsmooth	Multiobjective
None		quadprog	lsqcurvefit lsqnonlin	fminsearch fminunc	fminsearch <i>ga</i>	fgoalattain fminimax paretosearch gamultiobj
Bound		quadprog	lsqcurvefit lsqnonlin lsqnonneg lsqlin	fmincon	fminbnd ga surrogatopt patternsearch particleswarm simulannealbnd	fgoalattain fminimax paretosearch gamultiobj
Linear	linprog	quadprog	lsqlin	fmincon	ga patternsearch surrogatept	fgoalattain fminimax <i>paretosearch gamultiobj</i>
Second-Order Cone	coneprog	coneprog				
General smooth	fmincon	fmincon	fmincon	fmincon	ga patternsearch surrogateopt	fgoalattain fminimax paretosearch gamultiobj
General nonsmooth	ga patternsearch	ga patternsearch	ga patternsearch	ga patternsearch	ga patternsearch surrogateopt	paretosearch gamultiobj
Discrete	intlinprog				ga surrogateopt	

- Outline and define production optimization problem
- Introduction to MATLAB optimization products
- Set up and solve optimization problem with MATLAB
 - Improve mathematical model with heuristics
 - Problem-based optimization workflow in MATLAB
- Deploying optimization models
- Key takeaways

As a first step to solving the optimization problem, we use MATLAB to calculate valid pressure range for each multi-well pad.

Second, we want to define totalized production rate functions for each multi-well pad using well performance data.

Totalized production
<pre>function q = computeRates(pads, p) % % Loop through all wells and % accumulates flow rates % end</pre>

Third, we convert the totalized production function into an optimization expression and define constraints.

- Outline and define production optimization problem
- Introduction to MATLAB optimization products
- Prepare and set up optimization problem
 - Improve mathematical model with heuristics
 - Problem-based optimization workflow in MATLAB
- Deploying optimization models
- Key takeaways

MathWorks provides a comprehensive end-to-end solution for <AI/Data Science/Tech Computing>

Use MATLAB Web App Server, if you want to easily share MATLAB Web Apps with your colleagues or collaborators

 Spend more time developing apps than managing distribution

 Save time by eliminating the steps required for application distribution

Easy access to MATLAB Web Apps

- Save time by eliminating the steps to install the application on your desktop
- Access MATLAB Web Apps anywhere using a browser

Use MATLAB Production Server to operationalize your models or algorithms as APIs that are integrated with your enterprise IT/OT systems

Deploy AI / MLOps

- Deploy trained AI models for inference
- Models can be stored in a REDIS inmemory database for high-speed access

Process streaming analytics for IIoT

 Stream data from operational systems through streaming services such as Apache Kafka or Azure EventHub into MATLAB analytics for anomaly detection, condition based monitoring or predictive maintenance

Host Microservices APIs

 Share MATLAB algorithms and functions as microservice APIs in your corporate service fabric

- Outline and define production optimization problem
- Introduction to MATLAB optimization products
- Prepare and set up optimization problem
 - Improve mathematical model with heuristics
 - Problem-based optimization workflow in MATLAB
- Deploying optimization models
- Key takeaways

Key Takeaways

- MATLAB helps streamline processing data from external sources
- Optimization Toolbox can tackle very difficult problems with only a few steps
- Users can create and deploy custom optimization workflows as standalone applications (.exe), libraries (Python, Java, .NET, etc.), and microservices.
- MathWorks Training is highly recommended for efficient use of our tools.

MATLAB can tackle very complex optimization problems and create robust, deployable workflows

MathWorks

Optimization Techniques in MATLAB

Recommended Training

After this 1-day course you will be able to:

- Run optimization problems in MATLAB
- Specify objective functions and constraints
- Choose solvers and algorithms
- Evaluate results and improving performance
- Use global and multiobjective optimization methods

MATLAB Programming Techniques

Recommended Training

After this 2-day course you will be able to:

- Manage data efficiently
- Utilize development tools
- Structure code
- Create robust applications
- Verify application behavior

See detailed course outline

