
Bodo´s Power Systems® December 2019 www.bodospower.com54

CONTENT

Validating Battery Management
Systems with Simulation Models

Battery storage systems are critical technology for the success of electric vehicles and
supplementing renewable energy systems. As important as the physical battery pack,
the battery management system (BMS) ensures efficient and safe operation over the

lifespan of the energy storage system.

By Tony Lennon, Market Manager, Power Electronics Control, MathWorks

DESIGN AND SIMULATION

When developing the software for a BMS, you need to be mindful of
several operational conditions, as shown in Figure 1.

To enable the BMS to handle these operations, you could spend
time writing code, programming microcontrollers, building battery test
systems, and running numerous tests. If you have written all the code
perfectly, taken into account every scenario the battery system will
see, and run tests for all those cases, your BMS will work as intended.
The challenge is that you often cannot test all those scenarios for
situations such as damaging equipment, unusual hardware faults, and
the time it takes to charge and discharge a battery pack.

Another approach is to use system-level simulation to verify your
BMS algorithms and to help validate the BMS software. This does not
mean that you will not perform hardware testing. In fact, you will go
into hardware testing knowing that your software will have a better
chance of handling the normal and abnormal conditions specified for
the battery pack, even if you can’t test for them. The BMS simulation
model starts with desktop simulation of the design’s functional as-
pects, letting you perform formal verification and validation to industry
standards, and progresses for use to generate code for real-time
simulation and hardware implementation (Figure 2). By simulating the
complete battery system before hardware testing, you gain insight
into the dynamic behavior of the battery pack, explore software algo-
rithms, and test operational cases.

Desktop Simulation: Modeling BMS Functionality
Using desktop simulation, you verify functional aspects of the BMS
design, such as control and monitoring algorithms, cell charge and
discharge behavior, and the sizing of passive and active electrical
circuit elements. The battery, electrical circuitry, and external envi-
ronmental conditions and loads are developed as lumped-parameter
behavioral models. This approach lets you explore new design
ideas and test multiple system architectures before committing to a
hardware prototype. For example, you can compare active and pas-
sive cell balancing configurations to evaluate the suitability of each
approach.

Figure 1: Functions of the battery management system.

Figure 2: System-level simulation for battery management system
development.

Figure 3: Equivalent circuit of a battery with three-time constants,
internal resistance, and open-circuit potential.

https://www.mathworks.com/videos/battery-management-system-development-in-simulink-1523527694799.html?s_eid=PEP_20397
https://www.mathworks.com/videos/battery-management-system-development-in-simulink-1523527694799.html?s_eid=PEP_20397

www.bodospower.com December 2019 Bodo´s Power Systems® 55

CONTENT

Modeling and Characterizing the Battery Cell
For system-level simulation of a battery pack, a common approach is
to use an equivalent circuit that simulates the thermoelectric behavior
of a cell. As shown in Figure 3, the voltage source provides the open-
circuit voltage (OCV), a series resistor models internal resistance,
and one or more resistor-capacitor pairs in parallel represent the
time-dependent behavior of the cell. These elements are temperature
and state of charge (SOC) and are unique to each battery’s chemistry,
requiring they be determined using test data.

Modeling Power Electronics, Passive Components, Sources, and
Loads
Having a complete model of the electrical system lets you understand
how the BMS interacts with the battery pack. For example, the simula-
tion can contain a photovoltaic system model to represent a variable
charging source for testing the BMS algorithms under changing op-
erating conditions, including fault scenarios. An electrical load on the
battery pack, such as an interior permanent magnet synchronous mo-
tor in an electric vehicle, can be simulated for standard drive cycles.
The remainder of the battery system simulation is made up of active
and passive electrical components. These models can vary from
simple linear elements to having more complex nonlinear behavior.

Developing Supervisory Control Algorithms
Simulation models make it easy to develop supervisory control algo-
rithms using state machines and flow charts to model combinatorial
and sequential decision logic for fault detection and management,
charge and discharge power limitation, temperature control, and cell
balancing. You can see how the BMS supervises the battery system
as it reacts to events, time-based conditions, and external input
signals. For example, for constant current, constant voltage (CCCV)
charging, you can develop and test the logic that controls when the
cell transitions from current charging mode to voltage charging mode.

Estimating State of Charge
Open-circuit voltage (OCV) measurement and current integration
(coulomb counting) are traditional SOC estimation techniques for
older battery chemistries. Modern battery chemistries that have flat
OCV-SOC discharge signatures require a different approach for SOC
estimation. Extended Kalman filtering is shown to provide accurate
results for a reasonable computational effort. This technique often in-
cludes a nonlinear model of the battery and uses the current and volt-
age measured from the cell as inputs, as well as a recursive algorithm
that calculates the internal states of the system (SOC among them).

Estimating State of Health
Batteries degrade due to calendar life and cycling, increasing internal
resistance and losing reserve capacity. The increase in internal
resistance is a straightforward estimate using short time estimates.
Calculating loss of capacity is challenging because it requires a full
charge or discharge excursion for an accurate estimation. Unlike with
SOC, there is no standardized agreement on how state of health
(SOH) should be estimated. The practice is to use your organization’s
specific interpretation of battery health.

Testing with Desktop Simulation
As stated previously, fully testing a BMS using a hardware prototype
for all use cases may not be practical or safe. Desktop simulation lets
you verify BMS algorithms using test cases to exercise all possible
branches of logic and closed-loop control. When the battery system
must meet safety requirements, you use formal test methods in accor-
dance with standards such as IEC 61508, IEC 61851, and ISO 26262.
The simulation model serves as an executable specification driving
both the design and testing of the BMS (Figure 4).

Real-Time Simulation: Validating BMS Software
As a step in validating the BMS algorithms, you can use desktop
simulation models to generate C and HDL code for real-time simula-
tion, for both rapid prototyping (RP) and hardware-in-the-loop (HIL)
testing. With RP, you emulate the BMS controller, letting you begin
validating algorithms before implementing code on a microcontroller
or FPGA. HIL simulation emulates the balance of the battery system
and is used for testing a BMS controller before hardware prototypes
are used.

Some advantages of using real-time simulation for BMS design
include:
• Validating algorithms before the final controller hardware is selected
• Using the flexibility of a real-time test system for rapid design itera-

tion and testing
• Conducting HIL testing before battery system prototype hardware

is available
• Exercising BMS algorithms for test cases that may be difficult,

expensive, or destructive if you were to use the actual hardware

Rapid Prototyping
With RP, you generate code from your controller model and deploy it
to a real-time computer that performs the functions of the production
microcontroller. Code generation empowers the BMS engineer and
speeds up the testing process. Algorithm changes made and verified
in the desktop model can be tested on real-time hardware in hours

DESIGN AND SIMULATION

Figure 4: BMS algorithms and plant dynamics, including battery pack
and load modeled in Simulink.

Figure 5: HIL testing of battery management system software. The
BMS code is generated from BMS algorithms and deployed to a
microcontroller. The battery system model generates code that is
implemented on a real-time computer.

https://www.mathworks.com/videos/automating-the-parameter-estimation-of-a-battery-model-95187.html?s_eid=PEP_20397
https://www.mathworks.com/company/newsletters/articles/state-of-charge-estimation-based-on-an-extended-kalman-filter.html?s_eid=PEP_20397

www.bodospower.com56

rather than the days it could take to get a software engineer to repro-
gram changes to a microcontroller. Further, most real-time simulation
tools can interact with hardware to change algorithm parameters and
log test data.

Hardware-in-the-Loop (HIL) Testing
For HIL testing, you use the battery system models rather than the
control algorithm models to generate C/C++ or HDL code. This virtual
real-time environment represents the dynamic behavior of the battery
pack, active and passive circuit elements, loads, the charger, and

other system components. When deployed to a real-time computer,
you can run simulations of the hardware against your controller code
before testing the controller in a battery system prototype (Figure 5).
Tests developed during desktop simulation can be carried over to
HIL testing, to ensure that requirements are met as the BMS design
progresses. As a result, you can find and correct control design errors
before they potentially damage expensive and difficult-to-replace pro-
totype hardware. You can also uncover hardware design errors, such
as incorrect component sizing.

Production-Ready Code Generation
After rapid prototyping, the validated con-
trol algorithms are the basis for generating
production-ready code—either optimized C/C++
code for microcontrollers or synthesizable HDL
code for FPGA programming or ASIC imple-
mentation. Code generation from the simulation
model eliminates manual algorithm translation
errors and produces C/C++ and HDL code with
numerical equivalence to the algorithms of your
desktop simulation. Because you can simulate
the BMS algorithms over all possible operating
and fault conditions, your generated code will
handle those same conditions. If hardware tests
indicate that algorithm changes are needed,
you can modify the algorithms in your desktop
model, rerun simulation test cases to verify the
correctness of the changes, and generate new,
updated code (Figure 6).

www.mathworks.comFigure 6: Automatically generating BMS production code from BMS algorithms modeled in
Simulink. Code is deployed to a Texas Instruments microcontroller.

DESIGN AND SIMULATION

https://www.mathworks.com/solutions/embedded-code-generation.html?s_eid=PEP_20397
https://www.mathworks.com/solutions/embedded-code-generation.html?s_eid=PEP_20397
https://www.mathworks.com/solutions/hdl-code-generation-verification.html?s_eid=PEP_20397
https://www.mathworks.com/solutions/hdl-code-generation-verification.html?s_eid=PEP_20397
http://www.mathworks.com

