MATLAB Examples

6 kW 45 Vdc Fuel Cell Stack

This example shows the Proton Exchange Membrane (PEM) Fuel Cell Stack model feeding an average value 100Vdc DC/DC converter.

Olivier Tremblay, Njoya Motapon Souleman, Louis-A. Dessaint (Ecole de technologie superieure, Montreal)

Contents

Description

The nominal Fuel Cell Stack voltage is 45Vdc and the nominal power is 6kW. The converter is loaded by an RL element of 6kW with a time constant of 1 sec. During the first 10 secs, the utilization of the hydrogen is constant to the nominal value (Uf_H2 = 99.56%) using a fuel flow rate regulator. After 10 secs, the flow rate regulator is bypassed and the rate of fuel is increased to the maximum value of 85 lpm in order to observe the variation in the stack voltage. That will affect the stack efficiency, the fuel consumption and the air consumption.

Fuel cell voltage, current, DC/DC converter voltage and DC/DC converter current signals are available on the Scope2. Fuel flow rate, Hydrogen and oxygen utilization, fuel and air consumption, and efficiency are available on the Scope1.

Simulation

At t = 0 s, the DC/DC converter applies 100Vdc to the RL load (the initial current of the load is 0A). The fuel utilization is set to the nominal value of 99.56%. The current increases to the value of 133A. The flow rate is automatically set in order to maintain the nominal fuel utilization. Observe the DC bus voltage (Scope2) which is very well regulated by the converter. The peak voltage of 122Vdc at the beginning of the simulation is caused by the transient state of the voltage regulator.

At t = 10 s, the fuel flow rate is increased from 50 liters per minute (lpm) to 85 lpm during 3.5 s reducing by doing so the hydrogen utilization. This causes an increasing of the Nernst voltage so the fuel cell current will decrease. Therefore the stack consumption and the efficiency will decrease (Scope1).

Notes

1) You can vary more than 7 signals by checking the checkbox in the "Signal variation" tab of the Simulink® mask. Refer to documentation for more information.

2) A simplified version of the model allows simulating the fuel cell with less parameters using only the V-I curves. Select "Model detailed Level" to "Simplified". Note that the signal variation is not available in this mode; hence the Fuel flow rate input is not available anymore. Also the utilization, the stack consumption and the efficiency are 0 for the "Simplified" mode.