MATLAB Examples

# Example1.m

This script file will show the following: 1) How to interrogate Simulink's state definition 2) leveraging Simulink's state definition to map to your own 3) aligning state definition with eignvector elements

ADVICE: Did you know you can use the MATLAB debugger to step through this file line by line. Or use Cell Mode Execution to execute Cells at a time.

## Clean Up

```bdclose all clear all ```

## We will look at the F14 model

extract the state information

```statenames = getstatenames('f14'); ```

## Extract a linear model from this diagram

```disp('If we linearize the F14 model') mysys=linmod('f14') ```
```If we linearize the F14 model mysys = a: [10x10 double] b: [10x1 double] c: [2x10 double] d: [2x1 double] StateName: {10x1 cell} OutputName: {2x1 cell} InputName: {'f14/u'} OperPoint: [1x1 struct] Ts: 0 ```

## Calculate eigenvalues and eigenvectors

```[v,d]=eig(mysys.a); d=diag(d); disp(['So the first eigenvalue of ' num2str(d(1))]) disp(' ... has the following eigenvector') strcat(strjust(num2str(v(:,1),3),'right'), repmat({' -> '},length(statenames),1), statenames) ```
```So the first eigenvalue of -9.84322+9.5718i ... has the following eigenvector ans = ' 1+0i -> Transfer Fcn.2' ' -0.0127+0.0177i -> Transfer Fcn.1' ' 0.00034+0.00207i -> Actuator Model' ' 2.58e-019-5.53e-020i -> W-gust model' '-1.79e-020-1.19e-020i -> W-gust model' '-5.86e-020-1.01e-019i -> Q-gust model' '-7.31e-005-9.56e-005i -> Alpha-sensor Low-pass Filter' ' -0+0i -> Stick Prefilter' ' 0.00195+0.000167i -> Pitch Rate Lead Filter' ' -0.00136+0.00011i -> Proportional plus integral compensator' ```

## Exercise 1

```Can you change this script such that the complete state block path gets
mapped to the eigenvector elements?```
```HINTS:
-You only need to change 2 lines in this Example1.m script!
-See what optional output arguments GETSTATENAMES can return```