Documentation

Rodrigues to Rotation Angles

Convert Euler-Rodrigues vector to rotation angles

  • Library:
  • Utilities / Axes Transformations

Description

The Rodrigues to Rotation Angles block converts the 3-element Euler-Rodrigues vector into rotation angles.

Ports

Input

expand all

Euler-Rodrigues vector determined from rotation angles.

Data Types: double

Output

expand all

Rotation angles, in radians, from which to determine the Euler-Rodrigues vector. Quaternion scalar is the first element.

Data Types: double

Parameters

expand all

Rotation order for three wind rotation angles.

For the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' rotations, the block generates an R2 angle that lies between ±pi/2 radians (±90 degrees), and R1 and R3 angles that lie between ±pi radians (±180 degrees).

For the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' rotations, the block generates an R2 angle that lies between 0 and pi radians (180 degrees), and R1 and R3 angles that lie between ±pi (±180 degrees). However, in the latter case, when R2 is 0, R3 is set to 0 radians.

Algorithms

An Euler-Rodrigues vector b represents a rotation by integrating a direction cosine of a rotation axis with the tangent of half the rotation angle as follows:

b=[bxbybz]

where:

bx=tan(12θ)sx,by=tan(12θ)sy,bz=tan(12θ)sz

are the Rodrigues parameters. Vector s represents a unit vector around which the rotation is performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals ±pi radians or ±180 deg. Values can be negative or positive.

References

[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections." Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Introduced in R2017a

Was this topic helpful?