This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.


Create meander dipole antenna


The dipoleMeander class creates a meander dipole antenna with four dipoles. The antenna is center fed and it is symmetric about its origin. The first resonance of meander dipole antenna is at 200 MHz.

The width of the dipole is related to the diameter of an equivalent cylindrical dipole by the equation


, where:

  • d is the diameter of equivalent cylindrical dipole.

  • r is the radius of equivalent cylindrical dipole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent width. The default strip dipole is center-fed. The feed point coincides with the origin. The origin is located on the X-Y plane.



dm = dipoleMeander
dm = dipoleMeander(Name,Value)



dm = dipoleMeander creates a meander dipole antenna with four dipoles.

dm = dipoleMeander(Name,Value) creates a meander dipole antenna with four dipoles, with additional properties specified by one or more name-value pair arguments. Name is the property name and Value is the corresponding value. You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.


expand all

Dipole width, specified as a scalar in meters.

Example: 'Width',0.05

Data Types: double

Length of individual dipole arms, specified as a vector in meters. The total number of dipole arms generated is :


where N is the number of specified arm lengths.

Example: 'ArmLength',[0.6000 0.5000 1 0.4000]

Data Types: double

Notch length along the length of the antenna, specified as a scalar in meters.

For example, in a dipole meander antenna with seven stacked arms there are six notches.

Example: 'NotchLength',1

Data Types: double

Notch width perpendicular to the length of the antenna, specified as a scalar in meters.

Example: 'NotchWidth',1

Data Types: double

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more information, see lumpedElement.

Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using lumpedElement.

Tilt angle of antenna, specified as a scalar or vector with each element unit in degrees.

Example: 'Tilt',90

Example: 'Tilt',[90 90 0]

Data Types: double

Tilt axis of the antenna, specified as:

  • A three-element vector of Cartesian coordinates in meters. In this case, each vector starts at the origin and lies along the specified points on the X, Y, and Z axes.

  • Two points in space as three-element vectors of Cartesian coordinates. In this case, the antenna rotates along the line joining the two points.

  • A string input for simple rotations around the principal planes, X, Y, or Z.

For more information see, Rotate Antenna and Arrays

Example: 'TiltAxis',[0 1 0]

Example: 'TiltAxis',[0 0 0;0 1 0]

Example: 'TiltAxis','Z'

Data Types: double

Object Functions

showDisplay antenna or array structure; Display shape as filled patch
infoDisplay information about antenna or array
axialRatioAxial ratio of antenna
beamwidthBeamwidth of antenna
chargeCharge distribution on metal or dielectric antenna or array surface
currentCurrent distribution on metal or dielectric antenna or array surface
designDesign prototype antenna for resonance at specified frequency
EHfieldsElectric and magnetic fields of antennas; Embedded electric and magnetic fields of antenna element in arrays
impedanceInput impedance of antenna; scan impedance of array
meshMesh properties of metal or dielectric antenna or array structure
meshconfigChange mesh mode of antenna structure
patternRadiation pattern of antenna or array; Embedded pattern of antenna element in array
patternAzimuthAzimuth pattern of antenna or array
patternElevationElevation pattern of antenna or array
returnLossReturn loss of antenna; scan return loss of array
sparametersS-parameter object
vswrVoltage standing wave ratio of antenna


expand all

Create and view the default meander dipole antenna.

dm = dipoleMeander
dm = 
  dipoleMeander with properties:

          Width: 0.0040
      ArmLength: [0.0880 0.0710 0.0730 0.0650]
    NotchLength: 0.0238
     NotchWidth: 0.0170
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]


Plot the radiation pattern of meander dipole antenna at a 200MHz frequency.

dm = dipoleMeander;


[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

Introduced in R2015a

Was this topic helpful?