Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

This example shows how to access or edit parameter values and metadata in LTI objects.

The `tf`

, `zpk`

, `ss`

, and `frd`

commands create LTI objects that store model data in a single MATLAB® variable. This data includes model-specific parameters (e.g., A,B,C,D matrices for state-space models) as well as generic metadata such as input and output names. The data is arranged into a fixed set of data fields called **properties**.

You can access model data in the following ways:

The

`get`

commandStructure-like dot notation

Data retrieval commands

For illustration purposes, create the SISO transfer function (TF):

`G = tf([1 2],[1 3 10],'inputdelay',3)`

G = s + 2 exp(-3*s) * -------------- s^2 + 3 s + 10 Continuous-time transfer function.

To see all properties of the TF object `G`

, type

get(G)

Numerator: {[0 1 2]} Denominator: {[1 3 10]} Variable: 's' IODelay: 0 InputDelay: 3 OutputDelay: 0 Ts: 0 TimeUnit: 'seconds' InputName: {''} InputUnit: {''} InputGroup: [1x1 struct] OutputName: {''} OutputUnit: {''} OutputGroup: [1x1 struct] Notes: [0x1 string] UserData: [] Name: '' SamplingGrid: [1x1 struct]

The first four properties `Numerator`

, `Denominator`

, `IODelay`

, and `Variable`

are specific to the TF representation. The remaining properties are common to all LTI representations. You can use `help tf.Numerator`

to get more information on the `Numerator`

property and similarly for the other properties.

To retrieve the value of a particular property, use

`G.InputDelay % get input delay value`

ans = 3

You can use abbreviations for property names as long as they are unambiguous, for example:

`G.iod % get transport delay value`

ans = 0

`G.var % get variable`

ans = 's'

You can also retrieve all model parameters at once using `tfdata`

, `zpkdata`

, `ssdata`

, or `frdata`

. For example:

[Numerator,Denominator,Ts] = tfdata(G)

`Numerator = `*1x1 cell array*
{1x3 double}

`Denominator = `*1x1 cell array*
{1x3 double}

Ts = 0

Note that the numerator and denominator are returned as cell arrays. This is consistent with the MIMO case where `Numerator`

and `Denominator`

contain cell arrays of numerator and denominator polynomials (with one entry per I/O pair). For SISO transfer functions, you can return the numerator and denominator data as vectors by using a flag, for example:

`[Numerator,Denominator] = tfdata(G,'v')`

```
Numerator =
0 1 2
```

```
Denominator =
1 3 10
```

You can modify the data stored in LTI objects by editing the corresponding property values with `set`

or dot notation. For example, for the transfer function `G`

created above,

G.Ts = 1;

changes the sample time from 0 to 1, which redefines the model as discrete:

G

G = z + 2 z^(-3) * -------------- z^2 + 3 z + 10 Sample time: 1 seconds Discrete-time transfer function.

The `set`

command is equivalent to dot assignment, but also lets you set multiple properties at once:

```
G.Ts = 0.1;
G.Variable = 'q';
G
```

G = q + 2 q^(-3) * -------------- q^2 + 3 q + 10 Sample time: 0.1 seconds Discrete-time transfer function.

Using model editing together with LTI array support, you can easily investigate sensitivity to parameter variations. For example, consider the second-order transfer function

You can investigate the effect of the damping parameter `zeta`

on the frequency response by creating three models with different `zeta`

values and comparing their Bode responses:

s = tf('s'); % Create 3 transfer functions with Numerator = s+5 and Denominator = 1 H = repsys(s+5,[1 1 3]); % Specify denominators using 3 different zeta values zeta = [1 .5 .2]; for k = 1:3 H(:,:,k).Denominator = [1 2*zeta(k) 5]; % zeta(k) -> k-th model end % Plot Bode response bode(H) grid