Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Multivariate splines can be obtained from univariate splines by the tensor product construct. For example, a trivariate spline in B-form is given by

$$f\left(x,y,z\right)={\displaystyle \sum _{u=1}^{U}{\displaystyle \sum _{v=1}^{V}{\displaystyle \sum _{w=1}^{W}{B}_{u,k}\left(x\right){B}_{v,l}\left(y\right){B}_{w,m}\left(z\right){a}_{u,v,w}}}}$$

with *B _{u,k},B_{v,l},B_{w,m}* univariate
B-splines. Correspondingly, this spline is of order

A very different bivariate spline is the *thin-plate spline*.
This is a function of the form

$$f\left(x\right)={\displaystyle \sum _{j=1}^{n-3}\Psi \left(x-{c}_{j}\right){a}_{j}+x\left(1\right){a}_{n-2}+x\left(2\right){a}_{n-1}+{a}_{n}}$$

with ψ(*x*)=|*x*|^{2}log|*x*|^{2} the
thin-plate spline basis function, and |*x*| denoting
the Euclidean length of the vector *x*. Here, for
convenience, denote the independent variable by *x*,
but *x* is now a *vector* whose
two components, *x*(1) and *x*(2),
play the role of the two independent variables earlier denoted *x* and *y*.
Correspondingly, the sites *c _{j}* are
points in ℜ

Thin-plate splines arise as bivariate *smoothing splines*,
meaning a thin-plate spline minimizes

$$p{\displaystyle \sum _{i=1}^{n-3}\left|{y}_{i}-f{c}_{i}{}^{2}\right|+\left(1-p\right){\displaystyle \int \left({\left|{D}_{1}{D}_{1}f\right|}^{2}+2{\left|{D}_{1}{D}_{2}f\right|}^{2}+{\left|{D}_{2}{D}_{2}f\right|}^{2}\right)}}$$

over all sufficiently smooth functions *f*.
Here, the *y _{i}* are data values
given at the data sites

Thin-plate splines are functions in stform, meaning that, up
to certain polynomial terms, they are a weighted sum of arbitrary
or scattered translates Ψ(· -c) of one fixed function,
Ψ. This so-called basis function for the
thin-plate spline is special in that it is radially symmetric, meaning
that Ψ(*x*) only depends on the Euclidean length,
|*x*|, of *x*. For that reason,
thin-plate splines are also known as RBFs or radial basis functions. See Constructing and Working with stform Splines for more information.

A *rational spline* is any function of the
form *r*(*x*) = *s*(*x*)/*w*(*x*),
with both *s* and *w* splines and,
in particular, *w* a scalar-valued spline, while *s* often
is vector-valued.

Rational splines are attractive because it is possible to describe various basic geometric shapes, like conic sections, exactly as the range of a rational spline. For example, a circle can so be described by a quadratic rational spline with just two pieces.

In this toolbox, there is the additional requirement that both *s* and *w* be
of the same form and even of the same order, and with the same knot
or break sequence. This makes it possible to store the rational spline *r* as
the ordinary spline *R* whose value at *x* is
the vector [*s*(*x*);*w*(*x*)].
Depending on whether the two splines are in B-form or ppform, such
a representation is called here the rBform or the rpform of such a
rational spline.

It is easy to obtain *r* from *R*.
For example, if `v`

is the value of *R* at *x*,
then `v(1:end-1)/v(end)`

is the value of *r* at *x*.
There are corresponding ways to express derivatives of *r* in
terms of derivatives of *R*.

Was this topic helpful?