Documentation |
Transform IIR lowpass filter to IIR complex bandstop filter
[Num,Den,AllpassNum,AllpassDen] =
iirlp2bsc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt)
where Hd is a dfilt object
[Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandstop frequency transformation.
It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and the denominator specified by A.
This transformation effectively places one feature of an original filter, located at frequency -W_{o}, at the required target frequency location, W_{t1}, and the second feature, originally at +W_{o}, at the new location, W_{t2}. It is assumed that W_{t2} is greater than W_{t1}. Additionally the transformation swaps passbands with stopbands in the target filter.
Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, F_{1} and F_{2}, with F_{1} preceding F_{2}. Feature F_{1} will still precede F_{2} after the transformation. However, the distance between F_{1} and F_{2} will not be the same before and after the transformation.
Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.
Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandstop filters for band attenuation or frequency equalizers, from the high-quality prototype lowpass filter.
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt) returns transformed dfilt object G with a bandstop magnitude response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
Design a prototype real IIR halfband filter using a standard elliptic approach:
[b, a] = ellip(3, 0.1, 30, 0.409);
Move the cutoffs of the prototype filter to the new locations W_{t1}=0.25 and W_{t2}=0.75 creating a complex bandstop filter:
[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
The last command in the example plots both filters in the same window so you can compare the results.
Variable | Description |
---|---|
B | Numerator of the prototype lowpass filter |
A | Denominator of the prototype lowpass filter |
Wo | Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1, with 1 corresponding to half the sample rate. |
Wt | Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1, with 1 corresponding to half the sample rate. |
Num | Numerator of the target filter |
Den | Denominator of the target filter |
AllpassNum | Numerator of the mapping filter |
AllpassDen | Denominator of the mapping filter |