This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.


Zero-pole-gain complex bandpass frequency transformation


[Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)


[Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N) returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter being transformed from any prototype by applying an Nth-order rateup frequency transformation, where N is the upsample ratio. Transformation creates N equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The original lowpass filter is given with zeros, Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the transformation. However, the distance between F1 and F2 will not be the same before and after the transformation.


Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
% Upsample the prototype filter 4 times
[z2,p2,k2] = zpkrateup(z, p, k, 4);
% Compare prototype filter with target filter
fvtool(b, a, k2*poly(z2), poly(p2));



Zeros of the prototype lowpass filter


Poles of the prototype lowpass filter


Gain factor of the prototype lowpass filter


Integer upsampling ratio


Zeros of the target filter


Poles of the target filter


Gain factor of the target filter


Numerator of the mapping filter


Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

Introduced in R2011a

Was this topic helpful?