Note: This page has been translated by MathWorks. Please click here

To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.

[1] Ait-Sahalia, Y. “Testing Continuous-Time
Models of the Spot Interest Rate.” *The Review of
Financial Studies*. Spring 1996, Vol. 9, No. 2, pp. 385–426.

[2] Ait-Sahalia, Y. “Transition Densities
for Interest Rate and Other Nonlinear Diffusions.” *The
Journal of Finance. *Vol. 54, No. 4, August 1999.

[3] Amano, R. A., and S. van Norden. "Unit Root Tests and the Burden of Proof." Bank of Canada. Working paper 92–7, 1992.

[4] Andrews, D. W. K. “Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix Estimation.” *Econometrica*.
v. 59, 1991, pp. 817-858.

[5] Andrews, D. W. K., and J. C. Monohan. “An Improved
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix
Estimator.” *Econometrica*. v. 60, 1992,
pp. 953-966.

[6] Baillie, R. T., and T. Bollerslev. “Prediction
in Dynamic Models with Time-Dependent Conditional Variances.” *Journal
of Econometrics*. Vol. 52, 1992, pp. 91–113.

[7] Belsley, D. A., E. Kuh, and R. E. Welsh. *Regression
Diagnostics*. New York, NY: John Wiley & Sons, Inc.,
1980.

[8] Bera, A. K., and H. L. Higgins. “A
Survey of ARCH Models: Properties, Estimation and Testing.” *Journal
of Economic Surveys*. Vol. 7, No. 4, 1993.

[9] Bollerslev, T. “A Conditionally Heteroskedastic
Time Series Model for Speculative Prices and Rates of Return.” *Review
of Economics and Statistics*. Vol. 69, 1987, pp. 542–547.

[10] Bollerslev, T. “Generalized Autoregressive
Conditional Heteroskedasticity.” *Journal of Econometrics*.
Vol. 31, 1986, pp. 307–327.

[11] Bollerslev, T., R. Y. Chou, and K. F. Kroner.
“ARCH Modeling in Finance: A Review of the Theory and Empirical
Evidence.” *Journal of Econometrics*.
Vol. 52, 1992, pp. 5–59.

[12] Bollerslev, T., R. F. Engle, and D. B. Nelson.
“ARCH Models.” *Handbook of Econometrics*.
Vol. 4, Chapter 49, Amsterdam: Elsevier Science B.V., 1994, pp. 2959–3038.

[13] Bollerslev, T., and E. Ghysels. “Periodic
Autoregressive Conditional Heteroscedasticity.” *Journal
of Business and Economic Statistics*. Vol. 14, 1996, pp.
139–151.

[14] Box, G. E. P. and D. Pierce. "Distribution of Residual
Autocorrelations in Autoregressive-Integrated Moving Average Time
Series Models." *Journal of the American Statistical Association*.
Vol. 65, 1970, pp. 1509–1526.

[15] Box, G. E. P., G. M. Jenkins, and G. C.
Reinsel. *Time Series Analysis: Forecasting and Control*.
3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[16] Breusch, T.S., and Pagan, A.R. "Simple test for heteroscedasticity
and random coefficient variation". *Econometrica*.
v. 47, 1979, pp. 1287–1294.

[17] Brockwell, P. J. and R. A. Davis. *Introduction
to Time Series and Forecasting*. 2nd ed. New York, NY:
Springer, 2002.

[18] Brooks, C., S. P. Burke, and G. Persand.
“Benchmarks and the Accuracy of GARCH Model Estimation.” *International
Journal of Forecasting*. Vol. 17, 2001, pp. 45–56.

[19] Brown, M. B. and Forsythe, A. B. "Robust Tests for Equality
of Variances." *Journal of the American Statistical Association*.
69, 1974, pp. 364–367.

[20] Burke, S. P. "Confirmatory Data Analysis: The Joint Application of Stationarity and Unit Root Tests." University of Reading, UK. Discussion paper 20, 1994.

[21] Campbell, J. Y., A. W. Lo, and A. C. MacKinlay.
Chapter 12. “The Econometrics of Financial Markets.” *Nonlinearities
in Financial Data*. Princeton, NJ: Princeton University
Press, 1997.

[22] Caner, M., and L. Kilian. “Size Distortions
of Tests of the Null Hypothesis of Stationarity: Evidence and Implications
for the PPP Debate.” *Journal of International Money
and Finance*. Vol. 20, 2001, pp. 639–657.

[23] Cecchetti, S. G., and P. S. Lam. “Variance-Ratio
Tests: Small-Sample Properties with an Application to International
Output Data.” *Journal of Business and Economic Statistics*.
Vol. 12, 1994, pp. 177–186.

[24] Chow, G. C. “Tests of Equality
Between Sets of Coefficients in Two Linear Regressions.” *Econometrica*.
Vol. 28, 1960, pp. 591–605.

[25] Cochrane, J. “How Big is the Random
Walk in GNP?” *Journal of Political Economy*.
Vol. 96, 1988, pp. 893–920.

[26] Cribari-Neto, F. "Asymptotic Inference Under Heteroskedasticity
of Unknown Form." *Computational Statistics & Data Analysis*.
v. 45, 2004, pp. 215-233.

[27] Dagum, E. B. *The X-11-ARIMA Seasonal Adjustment
Method*. Number 12–564E. Statistics Canada, Ottawa,
1980.

[28] Davidson, R., and J. G. MacKinnon. *Econometric
Theory and Methods*. Oxford, UK: Oxford University Press,
2004.

[29]
Diebold, F.X. and G.D. Rudebusch. *Business Cycles: Durations, Dynamics, and Forecasting.* Princeton, NJ: Princeton University Press, 1999.

[30] den Haan, W. J., and A. Levin. "A Practitioner's Guide
to Robust Covariance Matrix Estimation." In *Handbook of
Statistics*. Edited by G. S. Maddala and C. R. Rao. Amsterdam:
Elsevier, 1997.

[31] Dickey, D. A., and W. A. Fuller.
“Distribution of the Estimators for Autoregressive Time Series
with a Unit Root.” *Journal of the American Statistical
Association*. Vol. 74, 1979, pp. 427–431.

[32] Dickey, D. A., and W. A. Fuller.
“Likelihood Ratio Statistics for Autoregressive Time Series
with a Unit Root.” *Econometrica*. Vol.
49, 1981, pp. 1057–1072.

[33] Durbin J., and S. J. Koopman. “A
Simple and Efficient Simulation Smoother for State Space Time Series
Analysis.” *Biometrika*. Vol 89., No.
3, 2002, pp. 603–615.

[34] Durbin J., and S. J. Koopman. *Time
Series Analysis by State Space Methods*. 2nd ed. Oxford:
Oxford University Press, 2012.

[35] Elder, J., and P. E. Kennedy.
“Testing for Unit Roots: What Should Students Be Taught?” *Journal
of Economic Education*. Vol. 32, 2001, pp. 137–146.

[36] Enders, W. *Applied Econometric
Time Series*. Hoboken, NJ: John Wiley & Sons, Inc.,
1995.

[37] Engle, Robert F. “Autoregressive Conditional
Heteroskedasticity with Estimates of the Variance of United Kingdom
Inflation.” *Econometrica*. Vol. 50, 1982,
pp. 987–1007.

[38] Engle, R. F. and C. W. J. Granger. “Co-Integration and Error-Correction: Representation, Estimation, and Testing.” Econometrica. v. 55, 1987, pp. 251–276.

[39] Engle, Robert F., D. M. Lilien, and R. P.
Robins. “Estimating Time Varying Risk Premia in the Term Structure:
The ARCH-M Model.” *Econometrica*. Vol.
59, 1987, pp. 391–407.

[40] Faust, J. “When Are Variance Ratio
Tests for Serial Dependence Optimal?” *Econometrica*.
Vol. 60, 1992, pp. 1215–1226.

[41] Findley, D. F., B. C. Monsell, W. R. Bell, M. C. Otto,
and B.-C. Chen. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment
Program." *Journal of Business & Economic Statistics*.
Vol. 16, Number 2, 1998, pp. 127–152 .

[42] Fisher, F. M. “Tests of Equality Between Sets
of Coefficients in Two Linear Regressions: An Expository Note.” *Econometrica*.
Vol. 38, 1970, pp. 361–66.

[43]
Gallager, R.G. *Stochastic Processes: Theory for Applications.* Cambridge, UK: Cambridge University Press, 2013.

[44] Gallant, A. R. *Nonlinear Statistical Models*.
Hoboken, NJ: John Wiley & Sons, Inc., 1987.

[45]
Gilks, W. R., S. Richardson, and D.J. Spiegelhalter. *Markov Chain Monte Carlo in Practice.* Boca Raton: Chapman & Hall/CRC, 1996.

[46] Glasserman, P. *Monte Carlo
Methods in Financial Engineering*. New York: Springer-Verlag,
2004.

[47] Glosten, L. R., R. Jagannathan, and D. E.
Runkle. “On the Relation between the Expected Value and the
Volatility of the Nominal Excess Return on Stocks.” *The
Journal of Finance*. Vol. 48, No. 5, 1993, pp. 1779–1801.

[48] Godfrey, L. G. *Misspecification Tests in Econometrics*.
Cambridge, UK: Cambridge University Press, 1997.

[49] Gourieroux, C. *ARCH Models and
Financial Applications*. New York: Springer-Verlag, 1997.

[50] Granger, C. W. J., and P. Newbold. “Spurious
Regressions in Econometrics.” *Journal of Econometrics*.
Vol 2, 1974, pp. 111–120.

[51] Greene, W. H. *Econometric Analysis*.
6th ed. Upper Saddle River, NJ: Prentice Hall, 2008.

[52] Goldfeld, S. M., and Quandt, R. E. "Some Tests for Homoscedasticity". *Journal
of the American Statistical Association*. v. 60, 1965,
pp. 539–547.

[53] Hagerud, G. E. “Modeling Nordic Stock
Returns with Asymmetric GARCH.” *Working Paper Series
in Economics and Finance*. No. 164, Stockholm:
Department of Finance, Stockholm School of Economics, 1997.

[54] Hagerud, G. E. “Specification Tests
for Asymmetric GARCH.” *Working Paper Series in
Economics and Finance*. No. 163, Stockholm: Department
of Finance, Stockholm School of Economics, 1997.

[55]
Haggstrom, O. *Finite Markov Chains and Algorithmic Applications.* Cambridge, UK: Cambridge University Press, 2002.

[56]
Hamilton, J. D. *Time Series Analysis*. Princeton, NJ: Princeton University Press, 1994.

[57] Haug, A. “Testing Linear Restrictions on Cointegrating
Vectors: Sizes and Powers of Wald Tests in Finite Samples.” *Econometric
Theory*. v. 18, 2002, pp. 505–524.

[58] Helwege, J., and P. Kleiman. “Understanding
Aggregate Default Rates of High Yield Bonds.” Federal Reserve
Bank of New York * Current Issues in Economics and Finance*.
Vol.2, No. 6, 1996, pp. 1-6.

[59] Hentschel, L. “All in the Family:
Nesting Symmetric and Asymmetric GARCH Models.” *Journal
of Financial Economics*. Vol. 39, 1995, pp. 71–104.

[60] Hull, J. C. *Options, Futures,
and Other Derivatives*. 5th ed. Englewood Cliffs, NJ: Prentice
Hall, 2002.

[61] Hodrick, Robert J, and Edward C. Prescott.
“Postwar U.S. Business Cycles: An Empirical Investigation.” *Journal
of Money, Credit, and Banking*. Vol. 29, No. 1, February
1997, pp. 1–16.

[62]
Horn, R. and C. R. Johnson. *Matrix Analysis.* Cambridge, UK: Cambridge University Press, 1985.

[63] Kutner, M. H., C. J. Nachtsheim, J. Neter,
and W. Li. *Applied Linear Statistical Models*.
5th Ed. New York: McGraw-Hill/Irwin, 2005.

[64] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt
and Y. Shin. “Testing the Null Hypothesis of Stationarity against
the Alternative of a Unit Root.” *Journal of Econometrics*.
Vol. 54, 1992, pp. 159–178.

[65] Jarrow, A. *Finance Theory*. Englewood Cliffs, NJ: Prentice-Hall,
1988.

[66]
Jarvis, J. P. and D.
R. Shier. "Graph-Theoretic Analysis of Finite Markov Chains." In *Applied Mathematical
Modeling: A Multidisciplinary Approach.* Boca Raton: CRC Press, 2000.

[67]
Johansen, S. *Likelihood-Based Inference in Cointegrated Vector Autoregressive Models*. Oxford: Oxford University Press, 1995.

[68] Johnson, N. L., S. Kotz, and N. Balakrishnan. *Continuous
Univariate Distributions*. Vol. 2, 2nd ed. New York: John
Wiley & Sons, 1995.

[69] Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lϋtkepohl,
and T. C. Lee. *The Theory and Practice of Econometrics*.
New York, NY: John Wiley & Sons, Inc., 1985.

[70]
Juselius, K. *The Cointegrated VAR Model*. Oxford: Oxford University Press, 2006.

[71] Leybourne, S. J. and B. P. M. McCabe. “A
Consistent Test for a Unit Root.” *Journal of Business
and Economic Statistics*. Vol. 12, 1994, pp. 157–166.

[72] Leybourne, S. J. and B. P. M. McCabe.
“Modified Stationarity Tests with Data-Dependent Model-Selection
Rules.” *Journal of Business and Economic Statistics*.
Vol. 17, 1999, pp. 264–270.

[73] Ljung, G. and G. E. P. Box. "On a Measure of Lack of
Fit in Time Series Models." *Biometrika*. Vol.
66, 1978, pp. 67–72.

[74] Lo, A. W., and A. C. MacKinlay. “Stock
Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification
Test.” *Review of Financial Studies*.
Vol. 1, 1988, pp. 41–66.

[75] Lo, A. W., and A. C. MacKinlay. “The
Size and Power of the Variance Ratio Test.” *Journal
of Econometrics*. Vol. 40, 1989, pp. 203–238.

[76] Lo, A. W., and A. C. MacKinlay. *A
Non-Random Walk Down Wall St.* Princeton, NJ: Princeton
University Press, 2001.

[77] Loeffler, G., and P. N. Posch. *Credit
Risk Modeling Using Excel and VBA*. West Sussex, England:
Wiley Finance, 2007.

[78] Long, J. S., and L. H. Ervin. "Using Heteroscedasticity-Consistent
Standard Errors in the Linear Regression Model." *The American
Statistician*. v. 54, 2000, pp. 217-224.

[79] Longstaff, F. A., and E. S. Schwartz.
“Valuing American Options by Simulation: A Simple Least-Squares
Approach.” *The Review of Financial Studies*.
Spring 2001, Vol. 14, No. 1, pp. 113–147.

[80]
Lütkepohl, H. *New Introduction to Multiple Time Series Analysis*. Berlin: Springer, 2005.

[81] MacKinnon, J. G. “Numerical Distribution Functions for Unit Root and Cointegration Tests.” Journal of Applied Econometrics. v. 11, 1996, pp. 601–618.

[82] MacKinnon, J. G., and H. White. "Some Heteroskedasticity-Consistent
Covariance Matrix Estimators with Improved Finite Sample Properties." *Journal
of Econometrics*. v. 29, 1985, pp. 305-325.

[83]
Maddala, G. S. and I. M. Kim. *Unit Roots, Cointegration, and Structural Change.* Cambridge, UK: Cambridge University Press, 1998.

[84] McCullough, B. D., and C. G. Renfro. “Benchmarks
and Software Standards: A Case Study of GARCH Procedures.” *Journal
of Economic and Social Measurement*. Vol. 25, 1998, pp.
59–71.

[85] McLeod, A.I. and W.K. Li. “Diagnostic Checking
ARMA Time Series Models Using Squared-Residual Autocorrelations.”*Journal
of Time Series Analysis*. Vol. 4, 1983, pp. 269–273.

[86]
Montgomery, J. *Mathematical Models of Social Systems.* Unpublished manuscript. Department of Sociology, University of Wisconsin-Madison, 2016.

[87] Morin, N. "Likelihood Ratio Tests on Cointegrating Vectors,
Disequilibrium Adjustment Vectors, and their Orthogonal Complements."* European
Journal of Pure and Applied Mathematics*. v. 3, 2010, pp.
541–571.

[88] Nelson, D. B. “Conditional Heteroskedasticity
in Asset Returns: A New Approach.” *Econometrica*.
Vol. 59, 1991, pp. 347–370.

[89] Nelson, C., and C. Plosser. “Trends
and Random Walks in Macroeconomic Time Series: Some Evidence and Implications.” *Journal
of Monetary Economics*. Vol. 10, 1982, pp. 130–162.

[90] Newey, W. K., and K. D. West. “A
Simple Positive Semidefinite, Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix.” *Econometrica*.
Vol. 55, 1987, pp. 703–708.

[91] Newey, W. K, and K. D. West. “Automatic
Lag Selection in Covariance Matrix Estimation.” *The
Review of Economic Studies*. Vol. 61, No. 4, 1994, pp.
631–653.

[92]
Norris, J. R. *Markov Chains.* Cambridge, UK: Cambridge University Press, 1997.

[93] Pankratz, A. *Forecasting with Dynamic Regression
Models.* John Wiley & Sons, 1991˙.

[94] Park, T. and G. Casella. “The Bayesian
Lasso.” *Journal of American Statistical Association*.
Vol. 103, 2008, pp. 681–686.

[95] Ng, S., and P. Perron. “Unit
Root Tests in ARMA Models with Data-Dependent Methods for the Selection
of the Truncation Lag.” *Journal of the American
Statistical Association*. Vol. 90, 1995, pp. 268–281.

[96] Park, R. E. "Estimation with Heteroscedastic Error Terms". *Econometrica*.
34, 1966 p. 888.

[97] Perron, P. “Trends and Random Walks
in Macroeconomic Time Series: Further Evidence from a New Approach.” *Journal
of Economic Dynamics and Control*. Vol. 12, 1988, pp. 297–332.

[98] Pesaran, H. H. and Y. Shin. “Generalized Impulse
Response Analysis in Linear Multivariate Models.” *Economic
Letters.* Vol. 58, 1998, 17–29.

[99] Peters, J. P. “Estimating and Forecasting Volatility of Stock Indices Using Asymmetric GARCH Models and Skewed Student-t Densities.” Working Paper. Belgium: École d'Administration des Affaires, University of Liège, March 20, 2001.

[100] Phillips, P. “Time Series Regression
with a Unit Root.” *Econometrica*. Vol.
55, 1987, pp. 277–301.

[101] Phillips, P., and P. Perron. “Testing
for a Unit Root in Time Series Regression." *Biometrika*.
Vol. 75, 1988, pp. 335–346.

[102] Rea, J. D. “Indeterminacy of the
Chow Test When the Number of Observations is Insufficient.” *Econometrica*.
Vol. 46, 1978, p. 229.

[103] Schwert, W. “Effects of Model Specification
on Tests for Unit Roots in Macroeconomic Data.” *Journal
of Monetary Economics*. Vol. 20, 1987, pp. 73–103.

[104] Schwert, W. “Tests
for Unit Roots: A Monte Carlo Investigation.” *Journal
of Business and Economic Statistics*. Vol. 7, 1989, pp.
147–159.

[105] Sharpe, W. F. “Capital Asset Prices:
A Theory of Market Equilibrium under Conditions of Risk.” *Journal
of Finance*. Vol. 19, 1964, pp. 425–442.

[106] Shreve, S. E. *Stochastic Calculus
for Finance II: Continuous-Time Models*. New York: Springer-Verlag,
2004.

[107] Sims, C., Stock, J., and Watson, M. “Inference
in Linear Time Series Models with Some Unit Roots.” *Econometrica*.
Vol. 58, 1990, pp. 113–144.

[108] Tibshirani, R. “Regression Shrinkage
and Selection via the Lasso.” *Journal of Royal Statistical
Society.* Vol. 58, 1996, pp. 267–288.

[109] Tsay,R.S. *Analysis of Financial Time Series*.
Hoboken, NJ: John Wiley & Sons, Inc., 2005.

[110] Turner, P. M. "Testing for Cointegration Using the Johansen
Approach: Are We Using the Correct Critical Values?" *Journal
of Applied Econometrics*. v. 24, 2009, pp. 825–831.

[111] U.S. Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis, `https://fred.stlouisfed.org/`

.

[112]
Wielandt, H. *Topics in the Analytic Theory of Matrices.* Lecture notes prepared by R. Mayer. Department of Mathematics, University of Wisconsin-Madison, 1967.

[113] White, H. "A Heteroskedasticity-Consistent Covariance
Matrix and a Direct Test for Heteroskedasticity." *Econometrica*.
v. 48, 1980, pp. 817-838.

[114] White, H. *Asymptotic Theory for Econometricians*.
New York: Academic Press, 1984.

[115] White, H., and I. Domowitz. “Nonlinear
Regression with Dependent Observations.” *Econometrica*.
Vol. 52, 1984, pp. 143–162.

[116] Wilson, A. L. “When is the Chow
Test UMP?” *The American Statistician*.
Vol. 32, 1978, pp. 66–68.

[117] Wold, H. *A Study in the Analysis of Stationary
Time Series*. Uppsala, Sweden: Almqvist & Wiksell,
1938.

Was this topic helpful?