Documentation |
EstMdl = estimate(Mdl,y)
[EstMdl,EstParamCov,logL,info]
= estimate(Mdl,y)
[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y,Name,Value)
EstMdl = estimate(Mdl,y) uses maximum likelihood to estimate the parameters of the EGARCH(P,Q) model Mdl given the observed univariate time series y. EstMdl is an egarch model that stores the results.
[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y) additionally returns EstParamCov, the variance-covariance matrix associated with estimated parameters, logL, the optimized loglikelihood objective function, and info, a data structure of summary information.
[EstMdl,EstParamCov,logL,info] = estimate(Mdl,y,Name,Value) estimates the model with additional options specified by one or more Name,Value pair arguments.
Suppose EstParamCov is an estimated parameter covariance matrix returned by estimate. The software sets the variances and covariances of parameters fixed during estimation to 0. Enter this command to count the number of free parameters (numParams) in a fitted model.
numParams = sum(any(EstParamCov))
This command counts the number of columns (or equivalently, rows) with any nonzero values.
[1] Bollerslev, T. "Generalized Autoregressive Conditional Heteroskedasticity." Journal of Econometrics. Vol. 31, 1986, pp. 307–327.
[2] Bollerslev, T. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return." The Review of Economics and Statistics. Vol. 69, 1987, pp. 542–547.
[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.
[4] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, 1995.
[5] Engle, R. F. "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica. Vol. 50, 1982, pp. 987–1007.
[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks." The Journal of Finance. Vol. 48, No. 5, 1993, pp. 1779–1801.
[7] Greene, W. H. Econometric Analysis. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1997.
[8] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.