Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Lagrange multiplier test of model specification

returns
a logical value (`h`

= lmtest(`score`

,`ParamCov`

,`dof`

)`h`

) with the rejection decision
from conducting a Lagrange multiplier test of
model specification at the 5% significance level. `lmtest`

constructs
the test statistic using the score function (`score`

),
the estimated parameter covariance (`ParamCov`

),
and the degrees of freedom (`dof`

).

returns
the rejection decision of the Lagrange multipler test conducted at
significance level `h`

= lmtest(`score`

,`ParamCov`

,`dof`

,`alpha`

)`alpha`

.

If

`score`

and`ParamCov`

are length*k*cell arrays, then all other arguments must be length*k*vectors or scalars.`lmtest`

treats each cell as a separate test, and returns a vector of rejection decisions.If

`score`

is a row cell array, then`lmtest`

returns a row vector.

[1] Davidson, R. and J. G. MacKinnon. *Econometric
Theory and Methods*. Oxford, UK: Oxford University Press,
2004.

[2] Godfrey, L. G. *Misspecification Tests in Econometrics*.
Cambridge, UK: Cambridge University Press, 1997.

[3] Greene, W. H. *Econometric Analysis*.
6th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.

[4] Hamilton, J. D. *Time Series Analysis*.
Princeton, NJ: Princeton University Press, 1994.

`arima`

| `estimate`

| `lratiotest`

| `vgxvarx`

| `waldtest`

Was this topic helpful?