Simulate Multiplicative ARIMA Models

This example shows how to simulate sample paths from a multiplicative seasonal ARIMA model using simulate. The time series is monthly international airline passenger numbers from 1949 to 1960.

Load the Data and Estimate a Model.

Load the data set Data_Airline.

y = log(Data);
T = length(y);

Mdl = arima('Constant',0,'D',1,'Seasonality',12,...
EstMdl = estimate(Mdl,y);
res = infer(EstMdl,y);
    ARIMA(0,1,1) Model Seasonally Integrated with Seasonal MA(12):
    Conditional Probability Distribution: Gaussian

                                  Standard          t     
     Parameter       Value          Error       Statistic 
    -----------   -----------   ------------   -----------
     Constant              0         Fixed          Fixed
        MA{1}      -0.377162     0.0667944       -5.64661
      SMA{12}      -0.572378     0.0854395       -6.69923
     Variance     0.00126337    0.00012395        10.1926

Simulate Airline Passenger Counts.

Use the fitted model to simulate 25 realizations of airline passenger counts over a 60-month (5-year) horizon. Use the observed series and inferred residuals as presample data.

Ysim = simulate(EstMdl,60,'NumPaths',25,'Y0',y,'E0',res);
mn = mean(Ysim,2);

hold on
h = plot(T+1:T+60,mn,'k--','LineWidth',2);
title('Simulated Airline Passenger Counts')
legend(h,'Simulation Mean','Location','NorthWest')
hold off

The simulated forecasts show growth and seasonal periodicity similar to the observed series.

Estimate the Probability of a Future Event.

Use simulations to estimate the probability that log airline passenger counts will meet or exceed the value 7 sometime during the next 5 years. Calculate the Monte Carlo error associated with the estimated probability.

rng default
Ysim = simulate(EstMdl,60,'NumPaths',1000,'Y0',y,'E0',res);

g7 = sum(Ysim >= 7) > 0;
phat = mean(g7)
err = sqrt(phat*(1-phat)/1000)
phat =


err =


There is approximately a 39% chance that the (log) number of airline passengers will meet or exceed 7 in the next 5 years. The Monte Carlo standard error of the estimate is about 0.02.

Plot the Distribution of Passengers at a Future Time.

Use the simulations to plot the distribution of (log) airline passenger counts 60 months into the future.

title('Distribution of Passenger Counts in 60 months')

See Also

| | |

Related Examples

More About

Was this topic helpful?