Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

getScenarios

Obtain scenarios from portfolio object

Use the getScenarios function with a PortfolioCVaR or PortfolioMAD objects to obtain scenarios.

For details on the workflows, see PortfolioCVaR Object Workflow, and PortfolioMAD Object Workflow.

Syntax

Y = getScenarios(obj)

Description

example

Y = getScenarios(obj) obtains scenarios for PortfolioCVaR or PortfolioMAD objects.

Examples

collapse all

For a given PortfolioCVaR object p, display the defined scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

m = m/12;
C = C/12;

rng(11);

rng(11);

AssetScenarios = mvnrnd(m, C, 10);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

Y = getScenarios(p)
Y = 

   -0.0056    0.0440    0.1186    0.0488
   -0.0368   -0.0753    0.0087    0.1124
    0.0025    0.0856    0.0484    0.1404
    0.0318    0.0826    0.0377    0.0404
    0.0013   -0.0561   -0.1466   -0.0621
    0.0035    0.0310   -0.0183    0.1225
   -0.0519   -0.1634   -0.0526    0.1528
    0.0029   -0.1163   -0.0627   -0.0760
    0.0192   -0.0182   -0.1243   -0.1346
    0.0440    0.0189    0.0098    0.0821

The function rng() resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

For a given PortfolioMAD object p, display the defined scenarios.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 10);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

Y = getScenarios(p)
Y = 

   -0.0056    0.0440    0.1186    0.0488
   -0.0368   -0.0753    0.0087    0.1124
    0.0025    0.0856    0.0484    0.1404
    0.0318    0.0826    0.0377    0.0404
    0.0013   -0.0561   -0.1466   -0.0621
    0.0035    0.0310   -0.0183    0.1225
   -0.0519   -0.1634   -0.0526    0.1528
    0.0029   -0.1163   -0.0627   -0.0760
    0.0192   -0.0182   -0.1243   -0.1346
    0.0440    0.0189    0.0098    0.0821

The function rng() resets the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

Input Arguments

collapse all

Object for portfolio, specified using a PortfolioCVaR or PortfolioMAD object.

For more information on creating a PortfolioCVaR or PortfolioMAD object, see

Output Arguments

collapse all

Scenarios matrix, returned as a NumScenarios-by-NumAssets matrix for a PortfolioCVaR or PortfolioMAD object.

Tips

You can also use dot notation to obtain scenarios from a PortfolioCVaR or PortfolioMAD object.

Y = obj.getScenarios;

Introduced in R2012b

Was this topic helpful?