# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

# sdeld class

Superclasses:

SDE with Linear Drift model

## Description

The `sdeld` constructor creates and displays SDE objects whose drift rate is expressed in linear drift-rate form and that derive from the `sdeddo` (SDE from drift and diffusion objects class).

Use `sdeld` objects to simulate sample paths of `NVARS` state variables expressed in linear drift-rate form. They provide a parametric alternative to the mean-reverting drift form (see `sdemrd`).

These state variables are driven by `NBROWNS` Brownian motion sources of risk over `NPERIODS` consecutive observation periods, approximating continuous-time stochastic processes with linear drift-rate functions.

The `sdeld` object allows you to simulate any vector-valued SDE of the form:

`$d{X}_{t}=\left(A\left(t\right)+B\left(t\right){X}_{t}\right)dt+D\left(t,{X}_{t}^{\alpha \left(t\right)}\right)V\left(t\right)d{W}_{t}$`
where:

• Xt is an `NVARS`-by-`1` state vector of process variables.

• A is an `NVARS`-by-`1` vector.

• B is an `NVARS`-by-`NVARS` matrix.

• D is an `NVARS`-by-`NVARS` diagonal matrix, where each element along the main diagonal is the corresponding element of the state vector raised to the corresponding power of α.

• V is an `NVARS`-by-`NBROWNS` instantaneous volatility rate matrix.

• dWt is an `NBROWNS`-by-`1` Brownian motion vector.

## Construction

`SDE = sdeld(A,B,Alpha,Sigma)` constructs a default `sdeld` object.

`SDE = sdeld(A,B,Alpha,Sigma,Name,Value)` constructs a `sdeld` object with additional options specified by one or more `Name,Value` pair arguments.

`Name` is a property name and `Value` is its corresponding value. `Name` must appear inside single quotes (`''`). You can specify several name-value pair arguments in any order as `Name1,Value1,…,NameN,ValueN`.

For more information on constructing a `sdeld` object, see `sdeld`.

### Input Arguments

expand all

Specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static (non-time-varying) parametric specification. This array fully captures all implementation details, which are clearly associated with a parametric form.

• A MATLAB function. Specifying a function provides indirect support for virtually any static, dynamic, linear, or nonlinear model. This parameter is supported via an interface, because all implementation details are hidden and fully encapsulated by the function.

### Note

You can specify combinations of array and function input parameters as needed.

Moreover, a parameter is identified as a deterministic function of time if the function accepts a scalar time `t` as its only input argument. Otherwise, a parameter is assumed to be a function of time t and state X(t) and is invoked with both input arguments.

`A` represents the parameter A, specified as an array or deterministic function of time.

If you specify `A` as an array, it must be an `NVARS`-by-`1` column vector of intercepts.

As a deterministic function of time, when `A` is called with a real-valued scalar time `t` as its only input, `A` must produce an `NVARS`-by-`1` column vector. If you specify `A` as a function of time and state, it must generate an `NVARS`-by-`1` column vector of intercepts when invoked with two inputs:

• A real-valued scalar observation time t.

• An `NVARS`-by-`1` state vector Xt.

Data Types: `double` | `function_handle`

`B` represents the parameter B, specified as an array or deterministic function of time.

If you specify `A` as an array, it must be an `NVARS`-by-`NVARS` matrix of state vector coefficients.

As a deterministic function of time, when `B` is called with a real-valued scalar time `t` as its only input, `B` must produce an `NVARS`-by-`NVARS` matrix. If you specify `B` as a function of time and state, it must generate an `NVARS`-by-`NVARS` matrix of state vector coefficients when invoked with two inputs:

• A real-valued scalar observation time t.

• An `NVARS`-by-`1` state vector Xt.

Data Types: `double` | `function_handle`

`Alpha` represents the parameter D, specified as an array or deterministic function of time.

If you specify `Alpha` as an array, it represents an `NVARS`-by-`1` column vector of exponents.

As a deterministic function of time, when `Alpha` is called with a real-valued scalar time `t` as its only input, `Alpha` must produce an `NVARS`-by-`1` matrix.

If you specify it as a function of time and state, `Alpha` must return an `NVARS`-by-`1` column vector of exponents when invoked with two inputs:

• A real-valued scalar observation time t.

• An `NVARS`-by-`1` state vector Xt.

Data Types: `double` | `function_handle`

`Sigma` represents the parameter V, specified as an array or a deterministic function of time.

If you specify `Sigma` as an array, it must be an `NVARS`-by-`NBROWNS` matrix of instantaneous volatility rates or as a deterministic function of time. In this case, each row of `Sigma` corresponds to a particular state variable. Each column corresponds to a particular Brownian source of uncertainty, and associates the magnitude of the exposure of state variables with sources of uncertainty.

As a deterministic function of time, when `Sigma` is called with a real-valued scalar time `t` as its only input, `Sigma` must produce an `NVARS`-by-`NBROWNS` matrix. If you specify `Sigma` as a function of time and state, it must return an `NVARS`-by-`NBROWNS` matrix of volatility rates when invoked with two inputs:

• A real-valued scalar observation time t.

• An `NVARS`-by-`1` state vector Xt.

Although the`gbm` constructor enforces no restrictions on the sign of `Sigma` volatilities, they are specified as positive values.

Data Types: `double` | `function_handle`

#### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside single quotes (`' '`). You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

For more information on using optional name-value arguments, see `cev`.

## Properties

expand all

Drift rate component of continuous-time stochastic differential equations (SDEs), specified as a drift object or function accessible by (t, Xt.

The drift rate specification supports the simulation of sample paths of `NVARS` state variables driven by `NBROWNS` Brownian motion sources of risk over `NPERIODS` consecutive observation periods, approximating continuous-time stochastic processes.

The `drift` class allows you to create drift-rate objects (using the `drift` constructor) of the form:

`$F\left(t,{X}_{t}\right)=A\left(t\right)+B\left(t\right){X}_{t}$`
where:

• `A` is an `NVARS`-by-`1` vector-valued function accessible using the (t, Xt) interface.

• `B` is an `NVARS`-by-`NVARS` matrix-valued function accessible using the (t, Xt) interface.

The `drift` object's displayed parameters are:

• `Rate`: The drift-rate function, F(t,Xt)

• `A`: The intercept term, A(t,Xt), of F(t,Xt)

• `B`: The first order term, B(t,Xt), of F(t,Xt)

`A` and `B` enable you to query the original inputs. The function stored in `Rate` fully encapsulates the combined effect of `A` and `B`.

When specified as MATLAB double arrays, the inputs `A` and `B` are clearly associated with a linear drift rate parametric form. However, specifying either `A` or `B` as a function allows you to customize virtually any drift rate specification.

### Note

You can express `drift` and `diffusion` classes in the most general form to emphasize the functional (t, Xt) interface. However, you can specify the components `A` and `B` as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: `F = drift(0, 0.1) % Drift rate function F(t,X)`

Attributes:

 `SetAccess` `private` `GetAccess` `public`

Data Types: `struct` | `double`

Diffusion rate component of continuous-time stochastic differential equations (SDEs), specified as a drift object or function accessible by (t, Xt.

The diffusion rate specification supports the simulation of sample paths of `NVARS` state variables driven by `NBROWNS` Brownian motion sources of risk over `NPERIODS` consecutive observation periods, approximating continuous-time stochastic processes.

The `diffusion` class allows you to create diffusion-rate objects (using the `diffusion` constructor):

`$G\left(t,{X}_{t}\right)=D\left(t,{X}_{t}^{\alpha \left(t\right)}\right)V\left(t\right)$`
where:

• `D` is an `NVARS`-by-`NVARS` diagonal matrix-valued function.

• Each diagonal element of `D` is the corresponding element of the state vector raised to the corresponding element of an exponent `Alpha`, which is an `NVARS`-by-`1` vector-valued function.

• `V` is an `NVARS`-by-`NBROWNS` matrix-valued volatility rate function `Sigma`.

• `Alpha` and `Sigma` are also accessible using the (t, Xt) interface.

The `diffusion` object's displayed parameters are:

• `Rate`: The diffusion-rate function, G(t,Xt).

• `Alpha`: The state vector exponent, which determines the format of D(t,Xt) of G(t,Xt).

• `Sigma`: The volatility rate, V(t,Xt), of G(t,Xt).

`Alpha` and `Sigma` enable you to query the original inputs. (The combined effect of the individual `Alpha` and `Sigma` parameters is fully encapsulated by the function stored in `Rate`.) The `Rate` functions are the calculation engines for the `drift` and `diffusion` objects, and are the only parameters required for simulation.

### Note

You can express `drift` and `diffusion` classes in the most general form to emphasize the functional (t, Xt) interface. However, you can specify the components `A` and `B` as functions that adhere to the common (t, Xt) interface, or as MATLAB arrays of appropriate dimension.

Example: ```G = diffusion(1, 0.3) % Diffusion rate function G(t,X) ```

Attributes:

 `SetAccess` `private` `GetAccess` `public`

Data Types: `struct` | `double`

Starting time of first observation, applied to all state variables, specified as a scalar

Attributes:

 `SetAccess` `public` `GetAccess` `public`

Data Types: `double`

Initial values of state variables, specified as a scalar, column vector, or matrix.

If `StartState` is a scalar, the `gbm` constructor applies the same initial value to all state variables on all trials.

If `StartState` is a column vector, the `gbm` constructor applies a unique initial value to each state variable on all trials.

If `StartState` is a matrix, the `gbm` constructor applies a unique initial value to each state variable on each trial.

Attributes:

 `SetAccess` `public` `GetAccess` `public`

Data Types: `double`

User-defined simulation function or SDE simulation method, specified as a function or SDE simulation method.

Attributes:

 `SetAccess` `public` `GetAccess` `public`

Data Types: `function_handle`

## Methods

### Inherited Methods

The following methods are inherited from the `sde` class.

`interpolate`

`simulate`

`simByEuler`

## Instance Hierarchy

The following figure illustrates the inheritance relationships among SDE classes.

## Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

## Examples

expand all

The `sdeld` class derives from the `sdeddo` class. These objects allow you to simulate correlated paths of `NVARS` state variables expressed in linear drift-rate form: .

`obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)`
```obj = Class SDELD: SDE with Linear Drift ---------------------------------------- Dimensions: State = 1, Brownian = 1 ---------------------------------------- StartTime: 0 StartState: 1 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler A: 0 B: 0.1 Alpha: 1 Sigma: 0.3 ```

`sdeld` objects provide a parametric alternative to the mean-reverting drift form and also provide an alternative interface to the `sdeddo` parent class, because you can create an object without first having to create its drift and diffusion-rate components.

## Algorithms

When you specify the required input parameters as arrays, they are associated with a specific parametric form. By contrast, when you specify either required input parameter as a function, you can customize virtually any specification.

Accessing the output parameters with no inputs simply returns the original input specification. Thus, when you invoke these parameters with no inputs, they behave like simple properties and allow you to test the data type (double vs. function, or equivalently, static vs. dynamic) of the original input specification. This is useful for validating and designing methods.

When you invoke these parameters with inputs, they behave like functions, giving the impression of dynamic behavior. The parameters accept the observation time t and a state vector Xt, and return an array of appropriate dimension. Even if you originally specified an input as an array, `sdeld` treats it as a static function of time and state, by that means guaranteeing that all parameters are accessible by the same interface.

## References

Ait-Sahalia, Y., “Testing Continuous-Time Models of the Spot Interest Rate” , The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp. 385–426.

Ait-Sahalia, Y., “Transition Densities for Interest Rate and Other Nonlinear Diffusions” , The Journal of Finance, Vol. 54, No. 4, August 1999.

Glasserman, P., Monte Carlo Methods in Financial Engineering, New York: Springer-Verlag, 2004.

Hull, J. C., Options, Futures, and Other Derivatives, 5th ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: John Wiley & Sons, 1995.

Shreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models, New York: Springer-Verlag, 2004.