# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# optstockbybaw

Calculate American options prices using Barone-Adesi and Whaley option pricing model

## Syntax

``Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)``

## Description

example

````Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)` calculates American options prices using the Barone-Adesi and Whaley option pricing model.```

## Examples

collapse all

Consider an American call option with an exercise price of \$120. The option expires on Jan 1, 2018. The stock has a volatility of 14% per annum, and the annualized continuously compounded risk-free rate is 4% per annum as of Jan 1, 2016. Using this data, calculate the price of the American call, assuming the price of the stock is \$125 and pays a dividend of 2%.

```StartDate = 'Jan-1-2016'; EndDate = 'jan-1-2018'; Basis = 1; Compounding = -1; Rates = 0.04; ```

Define the `RateSpec`.

```RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ... 'Rates',Rates,'Basis',Basis,'Compounding',Compounding) ```
```RateSpec = struct with fields: FinObj: 'RateSpec' Compounding: -1 Disc: 0.9231 Rates: 0.0400 EndTimes: 2 StartTimes: 0 EndDates: 737061 StartDates: 736330 ValuationDate: 736330 Basis: 1 EndMonthRule: 1 ```

Define the `StockSpec`.

```Dividend = 0.02; AssetPrice = 125; Volatility = 0.14; StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend) ```
```StockSpec = struct with fields: FinObj: 'StockSpec' Sigma: 0.1400 AssetPrice: 125 DividendType: {'continuous'} DividendAmounts: 0.0200 ExDividendDates: [] ```

Define the American option.

```OptSpec = 'call'; Strike = 120; Settle = 'Jan-1-2016'; Maturity = 'jan-1-2018'; ```

Compute the price for the American option.

```Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike) ```
```Price = 14.5180 ```

## Input Arguments

collapse all

Interest-rate term structure (annualized and continuously compounded), specified by the `RateSpec` obtained from `intenvset`. For information on the interest-rate specification, see `intenvset`.

Data Types: `struct`

Stock specification for the underlying asset. For information on the stock specification, see `stockspec`.

`stockspec` handles several types of underlying assets. For example, for physical commodities the price is `StockSpec.Asset`, the volatility is `StockSpec.Sigma`, and the convenience yield is `StockSpec.DividendAmounts`.

Data Types: `struct`

Settlement date for the American option, specified as a `NINST`-by-`1` matrix using a serial date number, a date character vector, or a datetime object.

Data Types: `double` | `char` | `datetime`

Maturity date for the American option, specified as a `NINST`-by-`1` matrix using a serial date number, a date character vector, or a datetime object.

Data Types: `double` | `char` | `datetime`

Definition of the option as `'call'` or `'put'`, specified as a `NINST`-by-`1` cell array of character vectors or string objects with values `'call'` or `'put'`.

Data Types: `char` | `cell` | `string`

American Option strike price value, specified as a nonnegative scalar or `NINST`-by-`1` matrix of strike price values. Each row is the schedule for one option.

Data Types: `single` | `double`

## Output Arguments

collapse all

Expected prices for American options, returned as a `NINST`-by-`1` vector.

## References

[1] Barone-Aclesi, G. and Robert E. Whaley. “Efﬁcient Analytic Approximation of American Option Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.

[2] Haug, E. The Complete Guide to Option Pricing Formulas. Second Edition. McGraw-Hill Education, January 2007.