This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materials including this page, select Japan from the country navigator on the bottom of this page.


Price options on stocks using Leisen-Reimer binomial tree model


[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)
[Price,PriceTree] = optstockbylr(___,Name,Value)



[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates) computes option prices on stocks using the Leisen-Reimer binomial tree model.


[Price,PriceTree] = optstockbylr(___,Name,Value) adds an optional name-value pair argument for AmericanOpt.


collapse all

This example shows how to price options on stocks using the Leisen-Reimer binomial tree model. Consider European call and put options with an exercise price of $95 that expire on July 1, 2010. The underlying stock is trading at $100 on January 1, 2010, provides a continuous dividend yield of 3% per annum and has a volatility of 20% per annum. The annualized continuously compounded risk-free rate is 8% per annum. Using this data, compute the price of the options using the Leisen-Reimer model with a tree of 15 and 55 time steps.

AssetPrice  = 100;
Strike = 95;

ValuationDate = 'Jan-1-2010';
Maturity = 'July-1-2010'; 

% define StockSpec
Sigma = 0.2;
DividendType = 'continuous'; 
DividendAmounts = 0.03;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

% define RateSpec
Rates = 0.08;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 15 and 55 time steps
LRTimeSpec15  = lrtimespec(ValuationDate, Maturity, 15); 
LRTimeSpec55  = lrtimespec(ValuationDate, Maturity, 55); 

% use the PP2 method
LRMethod  = 'PP2';

LRTree15 = lrtree(StockSpec, RateSpec, LRTimeSpec15, Strike, 'method', LRMethod);
LRTree55 = lrtree(StockSpec, RateSpec, LRTimeSpec55, Strike, 'method', LRMethod);

% price the call and the put options using the LR model:
OptSpec = {'call'; 'put'}; 

PriceLR15 = optstockbylr(LRTree15, OptSpec, Strike, Settle, Maturity);
PriceLR55 = optstockbylr(LRTree55, OptSpec, Strike, Settle, Maturity);

% calculate price using the Black-Scholes model (BLS) to compare values with
% the LR model:
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% compare values of BLS and LR
[PriceBLS PriceLR15 PriceLR55]
ans = 

    9.7258    9.7252    9.7257
    2.4896    2.4890    2.4895

% use treeviewer to display LRTree of 15 time steps

Input Arguments

collapse all

Stock tree structure, specified by lrtree.

Data Types: struct

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of character vectors with values 'call' or 'put'.

Data Types: char | cell

Option strike price value, specified with nonnegative integer:

  • For a European option, use a NINST-by-1 vector of strike prices.

  • For a Bermuda option, use a NINST-by-NSTRIKES vector of strike prices. Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

  • For an American option, use a NINST-by-1 vector of strike prices.

Data Types: double

Option exercise dates, specified as a vector of date character vectors or serial date numbers where each row is the schedule for one option and the last element of each row must be the same as the maturity of the tree.

  • For a European option, use a NINST-by-1 vector of dates. For a European option, there is only one ExerciseDate on the option expiry date.

  • For a Bermuda option, use a NINST-by-NSTRIKEDATES vector of dates.

  • For an American option, use a NINST-by-1 vector of exercise dates. For the American type, the option can be exercised on any tree data between the ValuationDate and tree maturity.

Data Types: double | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: [Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates,'AmericanOpt','1')

collapse all

Option type, specified as a NINST-by-1 vector of flags with values:

  • 0 — European or Bermuda

  • 1 — American

Data Types: double

Output Arguments

collapse all

expected prices at time 0, returned as a NINST-by-1 vector.

Tree structure, returned as a vector of instrument prices at each node. Values are:

  • PriceTree.PTree contains the clean prices.

  • PriceTree.tObs contains the observation times.

  • PriceTree.dObs contains the observation dates.


[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

Introduced in R2010b

Was this topic helpful?