# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

# optstockbylr

Price options on stocks using Leisen-Reimer binomial tree model

## Syntax

``[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)``
``[Price,PriceTree] = optstockbylr(___,Name,Value)``

## Description

example

````[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)` computes option prices on stocks using the Leisen-Reimer binomial tree model.```

example

````[Price,PriceTree] = optstockbylr(___,Name,Value)` adds an optional name-value pair argument for `AmericanOpt`.```

## Examples

collapse all

This example shows how to price options on stocks using the Leisen-Reimer binomial tree model. Consider European call and put options with an exercise price of \$95 that expire on July 1, 2010. The underlying stock is trading at \$100 on January 1, 2010, provides a continuous dividend yield of 3% per annum and has a volatility of 20% per annum. The annualized continuously compounded risk-free rate is 8% per annum. Using this data, compute the price of the options using the Leisen-Reimer model with a tree of 15 and 55 time steps.

```AssetPrice = 100; Strike = 95; ValuationDate = 'Jan-1-2010'; Maturity = 'July-1-2010'; % define StockSpec Sigma = 0.2; DividendType = 'continuous'; DividendAmounts = 0.03; StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts); % define RateSpec Rates = 0.08; Settle = ValuationDate; Basis = 1; Compounding = -1; RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ... 'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis); % build the Leisen-Reimer (LR) tree with 15 and 55 time steps LRTimeSpec15 = lrtimespec(ValuationDate, Maturity, 15); LRTimeSpec55 = lrtimespec(ValuationDate, Maturity, 55); % use the PP2 method LRMethod = 'PP2'; LRTree15 = lrtree(StockSpec, RateSpec, LRTimeSpec15, Strike, 'method', LRMethod); LRTree55 = lrtree(StockSpec, RateSpec, LRTimeSpec55, Strike, 'method', LRMethod); % price the call and the put options using the LR model: OptSpec = {'call'; 'put'}; PriceLR15 = optstockbylr(LRTree15, OptSpec, Strike, Settle, Maturity); PriceLR55 = optstockbylr(LRTree55, OptSpec, Strike, Settle, Maturity); % calculate price using the Black-Scholes model (BLS) to compare values with % the LR model: PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike); % compare values of BLS and LR [PriceBLS PriceLR15 PriceLR55]```
```ans = 9.7258 9.7252 9.7257 2.4896 2.4890 2.4895 ```
```% use treeviewer to display LRTree of 15 time steps treeviewer(LRTree15)```

## Input Arguments

collapse all

Stock tree structure, specified by `lrtree`.

Data Types: `struct`

Definition of the option as `'call'` or `'put'`, specified as a `NINST`-by-`1` cell array of character vectors with values `'call'` or `'put'`.

Data Types: `char` | `cell`

Option strike price value, specified with nonnegative integer:

• For a European option, use a `NINST`-by-`1` vector of strike prices.

• For a Bermuda option, use a `NINST`-by-`NSTRIKES` vector of strike prices. Each row is the schedule for one option. If an option has fewer than `NSTRIKES` exercise opportunities, the end of the row is padded with `NaN`s.

• For an American option, use a `NINST`-by-`1` vector of strike prices.

Data Types: `double`

Option exercise dates, specified as a vector of date character vectors or serial date numbers where each row is the schedule for one option and the last element of each row must be the same as the maturity of the tree.

• For a European option, use a `NINST`-by-`1` vector of dates. For a European option, there is only one `ExerciseDate` on the option expiry date.

• For a Bermuda option, use a `NINST`-by-`NSTRIKEDATES` vector of dates.

• For an American option, use a `NINST`-by-`1` vector of exercise dates. For the American type, the option can be exercised on any tree data between the `ValuationDate` and tree maturity.

Data Types: `double` | `char`

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside single quotes (`' '`). You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: ```[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates,'AmericanOpt','1')```

collapse all

Option type, specified as a `NINST`-by-`1` vector of flags with values:

• `0` — European or Bermuda

• `1` — American

Data Types: `double`

## Output Arguments

collapse all

expected prices at time 0, returned as a `NINST`-by-`1` vector.

Tree structure, returned as a vector of instrument prices at each node. Values are:

• `PriceTree.PTree` contains the clean prices.

• `PriceTree.tObs` contains the observation times.

• `PriceTree.dObs` contains the observation dates.

## References

[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.