# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

# swaptionbybdt

Price swaption from Black-Derman-Toy interest-rate tree

## Syntax

``````[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity)``````
``````[Price,PriceTree] = swaptionbybdt(___,Name,Value)``````

## Description

example

``````[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity)``` prices swaption using a Black-Derman-Toy tree.```

example

``````[Price,PriceTree] = swaptionbybdt(___,Name,Value)``` adds optional name-value pair arguments.```

## Examples

collapse all

This example shows how to price a 5-year call swaption using a BDT interest-rate tree. Assume that interest rate and volatility are fixed at 6% and 20% annually between the valuation date of the tree until its maturity. Build a tree with the following data.

```Rates = 0.06 * ones (10,1); StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';... 'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016']; EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';... 'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017']; ValuationDate = 'jan-1-2007'; Compounding = 1; % define the RateSpec RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ... 'Compounding', Compounding); % use VolSpec to compute interest-rate volatility Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,... EndDates, Volatility); % use TimeSpec to specify the structure of the time layout for a BDT tree TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); % build the BDT tree BDTTree = bdttree(VolSpec, RateSpec, TimeSpec); % use the following swaption arguments ExerciseDates = 'jan-1-2012'; SwapSettlement = ExerciseDates; SwapMaturity = 'jan-1-2015'; Spread = 0; SwapReset = 1; Principal = 100; OptSpec = 'call'; Strike=.062; Basis=1; % price the swaption [Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ... 'Basis', Basis, 'Principal', Principal)```
```Price = 2.0592 ```
```PriceTree = struct with fields: FinObj: 'BDTPriceTree' tObs: [0 1 2 3 4 5 6 7 8 9 10] PTree: {1x11 cell} ```

This example shows how to price a 5-year call swaption with receiving and paying legs using a BDT interest-rate tree. Assume that interest rate and volatility are fixed at 6% and 20% annually between the valuation date of the tree until its maturity. Build a tree with the following data.

```Rates = 0.06 * ones (10,1); StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';... 'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016']; EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';... 'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017']; ValuationDate = 'jan-1-2007'; Compounding = 1; ```

Define the `RateSpec`.

```RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ... 'Compounding', Compounding) ```
```RateSpec = struct with fields: FinObj: 'RateSpec' Compounding: 1 Disc: [10x1 double] Rates: [10x1 double] EndTimes: [10x1 double] StartTimes: [10x1 double] EndDates: [10x1 double] StartDates: [10x1 double] ValuationDate: 733043 Basis: 0 EndMonthRule: 1 ```

Use `VolSpec` to compute interest-rate volatility.

```Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,EndDates, Volatility); ```

Use `TimeSpec` to specify the structure of the time layout for a BDT tree.

```TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); ```

Build the BDT tree.

```BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) ```
```BDTTree = struct with fields: FinObj: 'BDTFwdTree' VolSpec: [1x1 struct] TimeSpec: [1x1 struct] RateSpec: [1x1 struct] tObs: [0 1 2 3 4 5 6 7 8 9] dObs: [1x10 double] TFwd: {1x10 cell} CFlowT: {1x10 cell} FwdTree: {1x10 cell} ```

Define the swaption arguments.

```ExerciseDates = 'jan-1-2012'; SwapSettlement = ExerciseDates; SwapMaturity = 'jan-1-2015'; Spread = 0; SwapReset = [1 1]; % 1st column represents receiving leg, 2nd column represents paying leg Principal = 100; OptSpec = 'call'; Strike=.062; Basis= [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg ```

Price the swaption.

```[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ... 'Basis', Basis, 'Principal', Principal) ```
```Price = 2.0592 PriceTree = struct with fields: FinObj: 'BDTPriceTree' tObs: [0 1 2 3 4 5 6 7 8 9 10] PTree: {1x11 cell} ```

## Input Arguments

collapse all

Interest-rate tree structure, specified by using `bdttree`.

Data Types: `struct`

Definition of the option as `'call'` or `'put'`, specified as a `NINST`-by-`1` cell array of character vectors. For more information, see Definitions.

Data Types: `char` | `cell`

Strike swap rate values, specified as a `NINST`-by-`1` vector.

Data Types: `double`

Exercise dates for the swaption, specified as a `NINST`-by-`1` vector or `NINST`-by-`2` using serial date numbers or date character vectors, depending on the option type.

• For a European option, `ExerciseDates` are a `NINST`-by-`1` vector of exercise dates. Each row is the schedule for one option. When using a European option, there is only one `ExerciseDate` on the option expiry date.

• For an American option, `ExerciseDates` are a `NINST`-by-`2` vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-`NaN` date is listed, or if `ExerciseDates` is `NINST`-by-`1`, the option can be exercised between the `ValuationDate` of the tree and the single listed `ExerciseDate`.

Data Types: `double` | `char` | `cell`

Number of basis points over the reference rate, specified as a `NINST`-by-`1` vector.

Data Types: `double`

Settlement date (representing the settle date for each swap), specified as a `NINST`-by-`1` vector of serial date numbers or a date character vectors. The `Settle` date for every swaption is set to the `ValuationDate` of the BDT Tree. The swap argument `Settle` is ignored. The underlying swap starts at the maturity of the swaption.

Data Types: `double` | `char`

Maturity date for each swap, specified as a `NINST`-by-`1` vector of dates using serial date numbers or date character vectors.

Data Types: `double` | `char` | `cell`

### Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside single quotes (`' '`). You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: ```[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec, ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',10000)```

collapse all

(Optional) Option type, specified as `NINST`-by-`1` positive integer flags with values:

• `0` — European

• `1` — American

Data Types: `double`

Reset frequency per year for the underlying swap, specified as a `NINST`-by-`1` vector or `NINST`-by-`2` matrix representing the reset frequency per year for each leg. If `SwapReset` is `NINST`-by-`2`, the first column represents the receiving leg, while the second column represents the paying leg.

Data Types: `double`

Day-count basis representing the basis used when annualizing the input forward rate tree for each instrument, specified as a `NINST`-by-`1` vector or `NINST`-by-`2` matrix representing the basis for each leg. If `Basis` is `NINST`-by-`2`, the first column represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

Data Types: `double`

Notional principal amount, specified as a `NINST`-by-`1` vector.

Data Types: `double`

Derivatives pricing options structure, specified using `derivset`.

Data Types: `struct`

## Output Arguments

collapse all

Expected prices of the swaptions at time 0, returned as a `NINST`-by-`1` vector.

Tree structure of instrument prices, returned as a MATLAB® structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within `PriceTree`:

• `PriceTree.PTree` contains the clean prices.

• `PriceTree.tObs` contains the observation times.

collapse all

### Call Swaption

A Call swaption or Payer swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

### Put Swaption

A Put swaption or Receiver swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.