Right-array division (./)

`c = rdivide(a,b)`

c = a./b

`c = rdivide(a,b)`

and `c = a./b`

perform
right-array division by dividing each element of `a`

by
the corresponding element of `b`

. If inputs `a`

and `b`

are
not the same size, one of them must be a scalar value.

The numerator input `a`

can be complex, but
the denominator `b`

requires a real-valued input.
If `a`

is complex, the real and imaginary parts of `a`

are
independently divided by `b`

.

The following table shows the rules used to assign property
values to the output of the `rdivide`

function.

Output Property | Rule |
---|---|

`Signedness` | If either input is If both inputs are |

`WordLength` | The output word length equals the maximum of the input word lengths. |

`FractionLength` | For |

The following table shows the rules the `rdivide`

function
uses to handle inputs with different data types.

Case | Rule |
---|---|

Interoperation of `fi` objects and built-in
integers | Built-in integers are treated as fixed-point objects. For
example, |

Interoperation of `fi` objects and constants | MATLAB |

Interoperation of mixed data types | Similar to all other `ScaledDouble` `Fixed-point` Built-in `double` Built-in `single`
When both inputs are |

In this example, you perform right-array division on a 3-by-3
magic square of `fi`

objects. Each element of the
3-by-3 magic square is divided by the corresponding element in the
3-by-3 input array `b`

.

a = fi(magic(3)) b = int8([3 3 4; 1 2 4 ; 3 1 2 ]) c = a./b

The `mrdivide`

function outputs a 3-by-3 array
of signed `fi`

objects, each of which has a word
length of 16 bits and fraction length of 11 bits.

a = 8 1 6 3 5 7 4 9 2 DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16 FractionLength: 11 b = 3 3 4 1 2 4 3 1 2 c = 2.6665 0.3335 1.5000 3.0000 2.5000 1.7500 1.3335 9.0000 1.0000 DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16 FractionLength: 11

Was this topic helpful?