Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

affine2d class

2-D Affine Geometric Transformation

Description

An affine2d object encapsulates a 2-D affine geometric transformation.

Code Generation support: Yes.

MATLAB Function Block support: Yes.

Construction

tform = affine2d() creates an affine2d object with default property settings that correspond to the identity transformation.

tform = affine2d(A) creates an affine2d object given an input 3-by-3 matrix A that specifies a valid affine transformation.

Input Arguments

A

3-by-3 matrix that specifies a valid affine transformation of the form:

A = [a b 0;
     c d 0;
     e f 1];

Default: Identity transformation

Properties

T

3-by-3 double-precision, floating point matrix that defines the 2-D forward affine transformation

The matrix T uses the convention:

[x y 1] = [u v 1] * T

where T has the form:

 [a b 0;
  c d 0;
  e f 1];

Dimensionality

Describes the dimensionality of the geometric transformation for both input and output points

Methods

invertInvert geometric transformation
isRigidDetermine if transformation is rigid transformation
isSimilarityDetermine if transformation is similarity transformation
isTranslationDetermine if transformation is pure translation
outputLimitsFind output spatial limits given input spatial limits
transformPointsForwardApply forward geometric transformation
transformPointsInverseApply inverse geometric transformation

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB® documentation.

Examples

expand all

Create an affine2d object that defines the transformation.

theta = 10;

tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])
tform = 

  affine2d with properties:

                 T: [3x3 double]
    Dimensionality: 2

Apply forward geometric transformation to an input (U,V) point (5,10).

[X,Y] = transformPointsForward(tform,5,10)
X =

    6.6605


Y =

    8.9798

Apply inverse geometric transformation to output (X,Y) point from the previous step to recover the original points from the inverse transformation.

[U,V] = transformPointsInverse(tform,X,Y)
U =

    5.0000


V =

    10

Read image.

A = imread('pout.tif');

Create an affine2d object that defines the transformation.

theta = 10;

tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])
tform = 

  affine2d with properties:

                 T: [3x3 double]
    Dimensionality: 2

Apply geometric transformation to image.

outputImage = imwarp(A,tform);
figure, imshow(outputImage);

Additional Capabilities

Code Generation

This function supports the generation of C code using MATLAB Coder™. For more information, see Code Generation for Image Processing.

When generating code, you can only specify singular objects—arrays of objects are not supported.

MATLAB Function Block

You can use this function in the MATLAB Function Block in Simulink.

Was this topic helpful?