Note: This page has been translated by MathWorks. Please click here

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Apply inverse spatial transformation

```
[U,V] =
tforminv(T,X,Y)
```

`[U1,U2,...,U_ndims_in] = tforminv(T,X1,X2,...,X_ndims_out)`

`U = tforminv(T,X)`

`[U1,U2,...,U_ndims_in] = tforminv(T,X)`

`U = tforminv(T,X1,X2,...,X_ndims_in)`

`[`

applies the 2D-to-2D inverse spatial transformation defined in `U`

,`V`

] =
tforminv(`T`

,`X`

,`Y`

)`T`

to
coordinate arrays `X`

and `Y`

, mapping the point
`[X(k) Y(k)]`

to the point `[U(k) V(k)]`

.

Both `T.ndims_in`

and `T.ndims_out`

must equal 2.
`X`

and `Y`

are typically column vectors, but they can
have any dimensionality. `U`

and `V`

are the same size as
`X`

and `Y`

`[`

applies the `U1,U2,...,U_ndims_in`

] = tforminv(`T`

,`X1,X2,...,X_ndims_out`

)`ndims_out`

-to-`ndims_in`

inverse transformation
defined in `T`

to the coordinate arrays
`X1,X2,...,X_ndims_out`

. The transformation maps the point ```
[X1(k)
X2(k) ... X_ndims_out(k)]
```

to the point ```
[U1(k) U2(k) ...
U_ndims_in(k)]
```

.

The number of input coordinate arrays, `ndims_out`

, must equal
`T.ndims_out`

. The number of output coordinate arrays,
`ndims_in`

, must equal `T.ndims_in`

. The arrays
`X1,X2,...,X_ndims_out`

can have any dimensionality, but must be the same
size. The output arrays `U1,U2,...,U_ndims_in`

must be this size also.

applies the `U`

= tforminv(`T`

,`X`

)`ndims_out`

-to-`ndims_in`

inverse transformation
defined in `T`

to array `X`

.

When

`X`

is a 2-D matrix with dimensions*m*-by-`ndims_out`

matrix,`U`

is a 2-D matrix with dimensions*m*-by-`ndims_in`

.`tforminv`

applies the transformation to to each row of`X`

.`tforminv`

maps the point`X`

(*k*, : ) to the point`U`

(*k*, : ).When

`X`

is an (*N*+1)-dimensional array,`tforminv`

maps the point`X`

(*k*_{1},*k*_{2}, … ,*k*_{N}, : ) to the point`U`

(*k*_{1},*k*_{2}, … ,*k*_{N}, : ).`size(X,N+1)`

must equal`ndims_out`

.`U`

is an (*N*+1)-dimensional array, with`size(U,I)`

equal to`size(X,I)`

for`I`

= 1, … ,*N*, and`size(U,N+1)`

equal to`ndims_in`

.

The syntax `U = tforminv(X,T)`

is an older form of this syntax that remains
supported for backward compatibility.

`[`

maps one (`U1,U2,...,U_ndims_in`

] = tforminv(`T`

,`X`

)*N*+1)-dimensional array to `ndims_in`

equally sized
*N*-dimensional arrays.

Was this topic helpful?