Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

ltePSSCHDRS

PSSCH demodulation reference signal

Syntax

[seq,info] = ltePSSCHDRS(ue)

Description

example

[seq,info] = ltePSSCHDRS(ue) returns a complex column vector sequence containing PSSCH demodulation reference signal (DM-RS) values and an associated information structure for the specified UE settings structure. For more information, see PSSCH Demodulation Reference Signal Processing.

Examples

collapse all

Generate a PSSCH DM-RS sequence associated with both DM-RS SC-FDMA symbols in a subframe. Plot the constellation of the sequence.

Create a user equipment settings structure.

ue = [];
ue.NSAID = 34;
ue.NSubframePSSCH = 5;
ue.PRBSet = (1:10)';

Generate a PSSCH DM-RS sequence. Plot the constellation.

[psschDrsSeq,info] = ltePSSCHDRS(ue);

plot(psschDrsSeq,'o')

Generate a PSSCH DM-RS sequence for V2X using the format 1 SCI PSCCH CRC.

Create a user equipment settings structure.

 ue = [];
 ue.SidelinkMode = 'V2X';
 ue.PRBSet = (1:10)';
 ue.NSLRB = 50;

Generate the format 1 SCI PSCCH CRC and asign it to the UE V2X scrambling identity.

 
sciinfo = lteSCIInfo(ue);
scibits = ones(1,sciinfo.Format1);
[cw,crc] = lteSCIEncode(ue,scibits);
ue.NXID = crc;

Generate a PSSCH DM-RS sequence. Plot the constellation.

[psschDrsSeq,info] = ltePSSCHDRS(ue);
plot(psschDrsSeq,'or')

Input Arguments

collapse all

User equipment settings, specified as a parameter structure containing these fields:

Sidelink mode, specified as 'D2D' or 'V2X'.

Data Types: char

Sidelink group destination identity, specified as an integer scalar from 0 to 255. ()

NSAID is the lower 8 bits of the full 24-bit ProSe Layer-2 group destination ID. NSAID and NSubframePSSCH control the value of the scrambling sequence at the start of each subframe.NSAID is only required for D2D sidelink.

Data Types: double

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the PSCCH SCI grant. It is only required for V2X sidelink.

Data Types: double

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssfPSSCH)

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for D2D sidelink.

Data Types: double

Zero-based physical resource block (PRB) indices, specified as an integer column vector or a two-column integer matrix.

The PSSCH is intended to be transmitted in the same PRB in each slot of a subframe. Therefore, specifying PRBSet as a single column of PRB indices is recommended. However, for a nonstandard slot-hopping PRB allocation, PRBSet can be specified as a two-column matrix of indices corresponding to slot-wise resource allocations for PSSCH.

Data Types: double

Data Types: struct

Output Arguments

collapse all

PSSCH DM-RS values, returned as a N × 12 × NPRB-by-1 column vector. For more information, see PSSCH Demodulation Reference Signal Processing.

PSSCH DM-RS information about the intermediate variables used to create the DM-RS, returned as a parameter structure containing these fields:

Reference signal cyclic shift for each slot, returned as a two-column vector. (α)

Alpha is proportional to NCS, where α=2πncs,λ12.

Base sequence group number for each slot, returned as a two-column vector. (u)

Base sequence number for each slot, returned as a two-column vector. (v)

Root Zadoff-Chu sequence index for each slot, returned as a two-column vector. (q)

Cyclic shift values for each slot, returned as a two-column vector. (ncs,λ)

Zadoff-Chu sequence length, returned as an integer. (NZCRS)

Orthogonal cover value for each slot, returned as a matrix. (w¯)

Data Types: struct

More About

collapse all

PSSCH Demodulation Reference Signal Processing

The PSSCH demodulation reference signal (DM-RS) sequence is transmitted alongside the ltePSSCH values using the two SC-FDMA symbols allocated to DM-RS in a PSSCH subframe. The output vector is the repetition of a 12-element sequence and specified in TS 36.211, Section 9.8. The vector is mapped onto the 12 DM-RS SC-FDMA symbol subcarriers in each subframe slot for each PSSCH physical resource block (PRB) transmission on antenna port 1000.

The output PSSCH DM-RS sequence is the concatenation of the two sequences to be mapped onto the DM-RS SC-FDMA symbol subcarriers in each subframe slot carrying a ltePSSCH transmission. Its length is N × 12 × NPRB, where NPRB is the number of PRBs associated with the PSSCH. For D2D sidelink, there is one DM-RS symbol per slot and thereforeN=2, and for V2X sidelink, there are two symbol per slot and N=4.

PSSCH Demodulation Reference Signal Indexing

Use the ltePSSCHDRSIndices indexing function and the corresponding ltePSCCHDRS sequence function to populate the resource grid for any PSSCH subframe. The PSSCH DM-RS is transmitted in the available SC-FDMA symbols in a PSSCH subframe, using a single layer on antenna port 1000.

The indices are ordered as the PSSCH DM-RS QPSK modulation symbols should be, applying frequency-first mapping. One-based linear indexing is the default return format, but alternative indexing formats can also be generated.

The resource elements in the last SC-FDMA symbol within a subframe are counted in the mapping process but should not be transmitted. The sidelink-specific SC-FDMA modulation creates the last symbol, which serves as a guard symbol.

For D2D sidelink, when indexing is zero-based, the SC-FDMA symbol indices used are {3,10} for normal cyclic prefix and {2,8} for extended cyclic prefix. The same symbols are used by the ltePUSCHDRSIndices function. For V2X sidelink, there are four DM-RS SC-FDMA symbols with indices {2,5,8,11} for normal cyclic prefix only.

Note

The indicated symbol indices are based on TS 36.211, Section 9.8. However, to align with the LTE System Toolbox™ subframe orientation, these indices are expanded from symbol index per slot to symbol index per subframe.

For more information on mapping symbols to the resource element grid, see Resource Grid Indexing.

References

[1] 3GPP TS 36.211. “Physical Channels and Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: http://www.3gpp.org.

Introduced in R2016b

Was this topic helpful?