Documentation

lteRMCDLTool

Downlink RMC waveform generation

Syntax

  • [waveform,grid,rmccfgout] = lteRMCDLTool
    example
  • [waveform,grid,rmccfgout] = lteRMCDLTool(rc,trdata,duplexmode,totsubframes)
  • [waveform,grid,rmccfgout] = lteRMCDLTool(rmccfg,trdata)
    example

Description

example

[waveform,grid,rmccfgout] = lteRMCDLTool starts a user interface for the parameterization and generation of the reference measurement channel (RMC) waveforms. The main function outputs are specified in the GUI but can also be assigned to variables. waveform, the generated reference measurement channel waveform, is a T-by-P matrix. Where T is the number of time-domain samples and P is the number of antennas. grid represents the populated resource grid for all the physical channels specified in TS 36.101, annex A.3, [1]. It is a 3-D array of resource elements for several subframes across all configured antenna ports, as described in Data Structures. rmccfgout is a structure containing information about the OFDM modulated waveform, as described in lteOFDMInfo, and the RMC-specific configuration parameters, as described in lteRMCDL.

[waveform,grid,rmccfgout] = lteRMCDLTool(rc,trdata,duplexmode,totsubframes) returns waveform, grid, and rmccfgout for the default reference measurement channel defined by rc, using the information bits trdata. duplexmode and totsubframes are optional input arguments, and define the duplex mode of the generated waveform and total number of subframes that make up the grid.

example

[waveform,grid,rmccfgout] = lteRMCDLTool(rmccfg,trdata) generates the waveform, grid, and rmccfgout as in the prior syntax except this syntax takes the user-defined reference channel structure rmccfg as input parameter. The reference configuration structure with default parameters can easily be created using lteRMCDL. The function lteRMCDL is designed to generate RMC configuration structures defined in TS 36.101, Annex A.3, [1]. You can use the lteRMCDL output configuration structure without change or modify it to align with your simulation requirements to generate the output waveform. SIB1 messages and the associated PDSCH and PDCCH can be added to the output waveform by adding the substructure rmccfg.SIB.

Examples

collapse all

Launch LTE Downlink RMC Generator Tool

This example launches the tool to generate a downlink reference measurement channel waveform.

The LTE Downlink RMC Generator dialog box appears when you execute the lteRMCDLTool function with no input arguments

lteRMCDLTool;

Use the GUI interface to generate the default waveform or adjust default settings prior to waveform generation

Generate LTE DL RMC R.12

This example generates a time domain signal, txWaveform, and a 3-dimensional array of the resource elements, txGrid, for RMC R.12 as specified in TS 36.101. This transmission modifies the standard R.12 RMC to use 16QAM modulation scheme instead of the default QPSK.

Generate rmc configuration structure using lteRMCDL specifying the RMC 'R.12'

rc = 'R.12';
rmc = lteRMCDL(rc);

Change the modulation scheme to '16QAM'

rmc.PDSCH.Modulation = '16QAM';

Generate the tx waveform, RE grid and also output the RMC configuration structure

txData = [1;0;0;1];
[txWaveform, txGrid, rmcCfgOut] = lteRMCDLTool(rmc, txData);

Review the rmcCgfOut structure and PDSCH substructure

rmcCfgOut
rmcCfgOut.PDSCH
rmcCfgOut = 

                 RC: 'R.12'
              NDLRB: 6
           CellRefP: 4
            NCellID: 0
       CyclicPrefix: 'Normal'
                CFI: 3
                 Ng: 'Sixth'
      PHICHDuration: 'Normal'
             NFrame: 0
          NSubframe: 0
       TotSubframes: 10
          Windowing: 0
         DuplexMode: 'FDD'
              PDSCH: [1x1 struct]
    OCNGPDCCHEnable: 'Off'
     OCNGPDCCHPower: 0
    OCNGPDSCHEnable: 'Off'
     OCNGPDSCHPower: 0
          OCNGPDSCH: [1x1 struct]
          SerialCat: 1
       SamplingRate: 1920000
               Nfft: 128


ans = 

           TxScheme: 'TxDiversity'
         Modulation: '16QAM'
            NLayers: 4
                Rho: 0
               RNTI: 1
              RVSeq: [0 1 2 3]
                 RV: 0
     NHARQProcesses: 8
       NTurboDecIts: 5
             PRBSet: [6x1 double]
         TrBlkSizes: [152 408 408 408 408 0 408 408 408 408]
    CodedTrBlkSizes: [960 2496 2496 2496 2496 0 2496 2496 2496 2496]
          DCIFormat: 'Format1'
        PDCCHFormat: 2
         PDCCHPower: 0
            CSIMode: 'PUCCH 1-1'
            PMIMode: 'Wideband'

Generate RMC R.3 with SIB

This example shows use of lteRMCDLTool to generate a tx waveform with SIB transmission enabled using DCIFormat1A and localized allocation.

Specify desired RMC, initialize configuration structure and define txData. Generate txGrid and plot it.

rc = 'R.3';
rmc = lteRMCDL(rc);

txData = [1;0;0;1];
[~,txGrid,~] = lteRMCDLTool(rmc, txData);
mesh(abs(txGrid))
view(2)

To insert SIB1 message into the output waveform, initialize SIB substructure, enable SIB transmission, adjust other defaults, and regenerate txGrid. Plot txGrid to illustrate the presence of SIB1 message in subframe 5

rmc.SIB.Enable = 'On';
rmc.SIB.DCIFormat = 'Format1A';
rmc.SIB.AllocationType = 0;
rmc.SIB.VRBStart = 8;
rmc.SIB.VRBLength = 8;
rmc.SIB.Data = randi([0 1],144,1);

[txWaveform,txGrid,rmcCfgOut] = lteRMCDLTool(rmc, txData);
figure
mesh(abs(txGrid))
view(2)

Related Examples

Input Arguments

collapse all

rc — Reference channel'R.0' | 'R.1' | 'R.2' | 'R.3' | 'R.4' | 'R.5' | 'R.6' | 'R.7' | 'R.8' | 'R.9' | 'R.10' | 'R.11' | 'R.12' | 'R.13' | 'R.14' | 'R.25' | 'R.26' | 'R.27' | 'R.28' | 'R.43' | 'R.44' | 'R.45' | 'R.45-1' | 'R.48' | 'R.50' | 'R.51' | 'R.6-27RB' | 'R.12-9RB' | 'R.11-45RB'

Reference channel, specified as a string. This argument identifies the reference measurement channel (RMC) number, as specified in TS 36.101, [1]. A given rc takes a default transmission scheme as shown in the following table.

Transmission Scheme

Duplex Mode

RMC Number

'Port0' — Single-antenna port, Port 0

'FDD' or 'TDD'

'R.0', 'R.1', 'R.2', 'R.3', 'R.4', 'R.5', 'R.6', 'R.7', 'R.8', 'R.9', 'R.6-27RB'

'TxDiversity' — Transmit diversity scheme

'FDD' or 'TDD'

'R.10', 'R.11', 'R.11-45RB', 'R.12', 'R.12-9RB'

'SpatialMux' — Closed-loop spatial multiplexing scheme

'FDD' or 'TDD'

'R.13', 'R.14'

'TDD''R.43'

'MultiUser' — Multi-user MIMO scheme

'FDD' or 'TDD'

- -

'Port5' — Single-antenna port, Port 5 (UE-specific beamforming)

'FDD' or 'TDD'

'R.25', 'R.26', 'R.27', 'R.28'

'Port7-14' — Up to eight-layer transmission, ports 7–14.'FDD''R.43', 'R.44', 'R.45', 'R.45-1', 'R.48', 'R.50', 'R.51'
'TDD''R.44', 'R.45', 'R.45-1', 'R.48', 'R.50', 'R.51'

    Note:   Reference channels 'R.6-27RB','R.12-9RB', and 'R.11-45RB' are custom RMCs configured for non-standard bandwidths but maintaining the same code rate as the standard versions.

Data Types: char

trdata — Information bitsvector | cell array containing one or two vectors

Information bits, specified as a vector or cell array containing one or two vectors of bit values. Each vector contains the information bits stream to be coded across the duration of the generation, which represents multiple concatenated transport blocks. If the number of bits required across all subframes of the generation exceeds the length of the vectors provided, the txdata vector is looped internally. This feature allows you to enter a short pattern, such as [1;0;0;1], which is repeated as the input to the transport coding. In each subframe of generation, the number of data bits taken from this stream comes from the elements of the rmccfgout.PDSCH.TrBlkSizes matrix.

When the trdata input contains empty vectors, there is no transport data. The transmission of PDSCH and its corresponding PDCCH are skipped in the waveform when the trdata contains empty vectors. The other physical channels and signals are transmitted as normal in generated waveform.

Example: [1;0;0;1]

Data Types: double | cell
Complex Number Support: Yes

duplexmode — Duplexing mode'FDD' (default) | optional | 'TDD'

Duplexing mode, specified as a string. Optional. This string represents the frame structure type of the generated waveform.

Data Types: char

totsubframes — Total number of subframes10 (default) | optional | positive numeric scalar

Total number of subframes, specified as a numeric scalar. Optional. This argument specifies the total number of subframes that form the resource grid.

Data Types: double

rmccfg — Reference channel configurationstructure

RMC configuration input structure

Reference channel configuration, specified as a structure. The structure defines any (or all) of the fields or subfields. The reference configuration structure with default parameters can easily be created using the lteRMCDL function. lteRMCDL generates the various RMC configuration structures as defined in TS 36.101, Annex A.3, [1]. The configuration structure output by lteRMCDL can be used without change or modified as desired to generate an output waveform. rmccfg can contain these fields.

Parameter FieldRequired or OptionalValuesDescription
RCOptional

'R0' (default), 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R11', 'R12', 'R13', 'R14', 'R25', 'R26', 'R27', 'R28', 'R43', 'R44', 'R45', 'R45-1', 'R48', 'R50', 'R51', 'R6-27RB', 'R12-9RB', 'R11-45RB'

Reference measurement channel (RMC) number or type, as specified in TS 36.101, Annex A.3

NDLRBRequired

Scalar integer (6, ..., 110). Standard bandwidth values are 6, 15, 25, 50, 75, and 100. NDLRB will also accept the standardized bandwidths in string format from the set {'1.4MHz', '3MHz', ‘5MHz', '10MHz', ‘15MHz', ‘20MHz'}.

Number of downlink (DL) resource blocks (RBs)

CellRefPRequired

1, 2, 4

Number of cell-specific reference signal (CRS) antenna ports

NCellDRequired

Nonnegative scalar integer (0,…,503)

Physical layer cell identity

CyclicPrefixOptional

'Normal' (default), 'Extended'

Cyclic prefix length

CFIRequired

1, 2, or 3. scalar or if the CFI varies per subframe, a vector of length 10 (corresponding to a frame).

Control format indicator (CFI) value. In TDD mode, CFI varies per subframe for the RMCs ('R.0', 'R.5', 'R.6', 'R.6-27RB', 'R.12-9RB')

[a]
NgRequired

'Sixth', 'Half', 'One', 'Two'

HICH group multiplier

PHICHDurationRequired

Nonnegative scalar integer

PHICH duration

NFrameOptional

0 (default), Nonnegative scalar integer

Frame number

NSubFrameRequired

Nonnegative scalar integer

Subframe number

TotSubFramesRequired

Nonnegative scalar integer

Total number of subframes to generate

WindowingRequired

Nonnegative scalar integer

Number of time-domain samples over which windowing and overlapping of OFDM symbols is applied

DuplexModeOptional

'FDD' (default), 'TDD'

Duplexing mode, specified as:

  • 'FDD' for Frequency Division Duplex or

  • 'TDD' for Time Division Duplex

The following fields are only present when DuplexMode is 'TDD'.

  TDDConfigOptional

0 (default), 1, 2, 3, 4, 5, 6

Uplink or downlink configuration

  SSCOptional

0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9

Special subframe configuration (SSC)

The following field is only present for 'Port7-14' transmission scheme
  CSIRSPeriodOptional

'On' (default), 'Off', Icsi-rs (0,...,154), [Tcsi-rs Dcsi-rs]. You can also specify values in a cell array of configurations for each resource.

CSI-RS subframe configurations for one or more CSI-RS resources. Multiple CSI-RS resources can be configured from a single common subframe configuration or from a cell array of configurations for each resource.

The following fields are only present for 'Port7-14' transmission scheme and only required if CSIRSPeriod is not set to 'Off‘.

  CSIRSConfigRequired

scalar integer

Array CSI-RS configuration indices. See TS 36.211, Table 6.10.5.2-1.

  CSIRefPOptional

1 (default), 2, 4, 8

Array of number of CSI-RS antenna ports

The following field is only present for 'Port7-14' transmission scheme
  ZeroPowerCSIRSPeriodOptional

'Off' (default), 'On', Icsi-rs (0,...,154), [Tcsi-rs Dcsi-rs]. You can also specify values in a cell array of configurations for each resource.

Zero power CSI-RS subframe configurations for one or more zero power CSI-RS resource configuration index lists. Multiple zero power CSI-RS resource lists can be configured from a single common subframe configuration or from a cell array of configurations for each resource list.

The following field is only present for 'Port7-14' transmission scheme and only required if CSIRSPeriod is not set to 'Off‘.

  ZeroPowerCSIRSConfigRequired

16-bit bitmap string (truncated if not 16 bits or '0' MSB extended), or a numeric list of CSI-RS configuration indices. You can also specify values in a cell array of configurations for each resource.

Zero power CSI-RS resource configuration index lists (TS 36.211 Section 6.10.5.2). Specify each list as a 16-bit bitmap string (if less than 16 bits, then '0' MSB extended). or as a numeric list of CSI-RS configuration indices from TS 36.211 Table 6.10.5.2-1 in the '4' CSI reference signal column. To specify multiple lists can be defined using a cell array of bitmap strings or numeric lists.

PDSCHRequired

Scalar structure

PDSCH transmission configuration substructure

SIBOptional

Scalar structure

Include a SIB message by adding the SIB substructure to the lteRMCDL function configuration output structure, rmccfgout, after it is generated and before using the rmccfgout structure as input to lteRMCDLTool.
OCNGPDCCHEnableRequired

'Off', 'On'

Enable PDCCH OFDMA channel noise generator (OCNG).

[b]
OCNGPDCCHPowerRequired

Scalar integer, 0 (default)

PDCCH OCNG power in dB

OCNGPDSCHEnableRequired

'Off', 'On'

Enable PDSCH OCNG

OCNGPDSCHPowerRequired

Scalar integer, defaults to PDSCH.Rho (default)

PDSCH OCNG power in dB

OCNGPDSCHRequired

scalar structure

PDSCH OCNG configuration substructure

OCNG

'Off', 'On'. ‘Disable' and 'Enable' are also accepted.

OFDMA channel noise generator

    Note:   This parameter will be removed in a future release. Use the PDCCH and PDSCH-specific OCNG parameters instead.

[a] CFI is equal to the number of symbols allocated to:

  • PDCCH - 1 for NDLRB < 10

  • PDCCH for NDLRB >= 10

For the RMCs, the number of symbols allocated to PDCCH varies with channel bandwidth setting,
  • 2 symbols for 20 MHz, 15 MHz, and 10 MHz

  • 3 symbols for 5 MHz and 3 MHz

  • 4 symbols for 1.4 MHz

In the TDD mode, only two OFDM symbols are allocated to PDCCH in subframes 1 and 6 irrespective of the channel bandwidth. Therefore, the CFI value varies per subframe for the 5 MHz and 3 MHz and 1.4 MHz channel bandwidths, that is for bandwidths where PDCCH symbol allocation is not two for other subframes.

[b] The PDCCH ONCG fills the unused PDCCH resource elements with QPSK symbols using either single port or transmit diversity depending on the number of cell RS ports.

PDSCH substructure

The substructure PDSCH relates to the physical channel configuration and contains these fields:

Parameter FieldRequired or OptionalValuesDescription
TxSchemeOptional

Default TxScheme is RMC-dependent. Valid values include: 'SpatialMux', 'Port0', 'TxDiversity', 'CDD', 'MultiUser', 'Port5', 'Port7-8', 'Port8', 'Port7-14'

PDSCH transmission scheme, specified as one of the following options.

  • 'Port0' — Single-antenna port, port 0

  • 'TxDiversity' — Transmit diversity scheme

  • 'CDD' — Large delay CDD scheme

  • 'SpatialMux' — Closed-loop spatial multiplexing

  • 'MultiUser' — Multiuser MIMO scheme

  • 'Port5' — Single-antenna port, port 5

  • 'Port7-8' — Single-antenna port, port 7 (NLayers = 1). Dual layer transmission, ports 7 and 8 (NLayers = 2).

  • 'Port8' — Single-antenna port, port 8

  • 'Port7-14' — Up to eight-layer transmission, ports 7–14

ModulationRequired

('QPSK', '16QAM', '64QAM', '256QAM') String or cell array of strings.

Modulation type, specified as a string or cell array of strings. If 2 blocks, each cell is associated with a transport block.

NLayersOptional

1 (default), 2, 3, 4, 5, 6, 7, 8

Number of transmission layers

NTxAntsRequired

Nonnegative scalar integer

Number of transmission antenna ports. This argument is only present for UE-specific demodulation reference symbols.

RhoOptional

0 (default), Scalar

PDSCH resource element power allocation, in dB

RNTIRequired

Scalar integer

Radio network temporary identifier (RNTI) value (16 bits)

RVSeqRequired

Integer vector (0,1,2,3)[a]

Specifies the sequence of Redundancy Version (RV) indicators for each HARQ process. The number of elements in each row is equal to the number of transmissions in each HARQ process. If RVSeq is a row vector in a two codeword transmission, then the same RV sequence is applied to both codewords

RVRequired

Integer vector (0,1,2,3)[b]

Specifies the redundancy version for one or two codewords used in the initial subframe number, NSubframe. This parameter field is only for informational purposes and is Read-Only.

NHARQProcessesRequired

Nonnegative scalar integer

(1...8)

Number of HARQ processes

NSubFrameRequired

Nonnegative scalar integer

Subframe number

NTurboDecitsOptional

5 (default), Nonnegative scalar integer

Number of turbo decoder iteration cycles

PRBSetRequired

1- or 2-column integer matrix

Zero-based physical resource block (PRB) indices corresponding to the slot wise resource allocations for this PDSCH. PRBSet can be assigned as:

  • a column vector, the resource allocation is the same in both slots of the subframe,

  • a two-column matrix, this parameter specifies different PRBs for each slot in a subframe,

  • a cell array of length 10 (corresponding to a frame, if the allocated physical resource blocks vary across subframes).

PRBSet varies per subframe for the RMCs 'R.25'(TDD), 'R.26'(TDD), 'R.27'(TDD), 'R.43'(FDD), 'R.44', 'R.45', 'R.48', 'R.50', and 'R.51'.

TrBlkSizesRequired

One or two row numeric matrix

Transport block sizes for each subframe in a frame

CodedTrBlkSizesRequired

One or two row numeric matrix

Coded transport block sizes for one or two codewords. This parameter field is only for informational purposes.

CSIModeRequired

'PUCCH 1-0', 'PUCCH 1-1', 'PUSCH 1-2', 'PUSCH 3-0', 'PUSCH 3-1'

CSI reporting mode

PMIModeOptional

'Wideband' (default), 'Subband'

PMI reporting mode

PMISetRequired

Integer vector (0, ..., 15)

Precoder matrix indication (PMI) set. It can contain either a single value, corresponding to single PMI mode, or multiple values, corresponding to multiple or subband PMI mode. The number of values depends on CellRefP, transmission layers and TxScheme. For more information about setting PMI parameters, see ltePMIInfo.

NSCIDOptional

0 (default), 1

Scrambling identity (ID)

Present only for 'Port7-8', 'Port8' and 'Port7-14' transmission schemes.

WOptional

Numeric matrix, [] (default)

Present only for wideband UE-specific beamforming ('Port5', 'Port7-8','Port8','Port7-14'). The NLayers-by-NTxAnts precoding matrix chosen according to TS 36.101 Annex B.4. The resulting precoding matrix is randomly selected from:

  • the set defined in TS 36.211 Section 6.3.4 for 'Port5', 'Port7-8' and 'Port8' transmission schemes

  • or from the set associated with CSI reporting as defined in TS 36.213 Section 7.2.4 for the 'Port7-14' transmission scheme.

For R.48, the precoding matrix corresponding to PMI=0 is used.

[a] A one or two row matrix (for one or two codewords)

[b] A one or two column matrix (for one or two codewords)

SIB substructure

If the substructure SIB has been added to rmccfg, SIB1 messages and the associated PDSCH and PDCCH can be generated. The SIB substructure includes these fields:

Parameter FieldRequired or OptionalValuesDescription
DataRequired(0,1), bit array SIB1 transport block information bits
VRBStartRequired

variable, see rules in TS 36.213 Section 7.1.6.3

Virtual RB allocation starting resource block, RBstart.

VRBLengthRequired

variable, see rules in TS 36.213 Section 7.1.6.3

Length in terms of virtually contiguously allocated resource blocks, LCRBs.

EnableOptional'On' (default), 'Off‘Enable/Disable SIB generation
DCIFormatOptional'Format1A' (default) or 'Format1C'

Downlink control information (DCI) format type string

AllocationTypeOptional0 (default) or 1, single bit flagLocalized (0) or distributed (1) allocation of virtual resource blocks for Resource allocation type 2

The following parameter is only required for (DCIFormat = 'Format1A')

N1APRBOptional2 or 3Transport block set selection parameter,

NPRB1A

Indicates the column in TS 36.213, Table 7.1.7.2.1-1 for transport block size selection. The default is the smallest transport block size, in either column 2 or 3, that provides a valid transport block size bigger than or equal to the length of the Data field. Also see TS 36.212 Section 5.3.3.1.3 and TS 36.213 Section 7.1.7.

The following parameter is only required for distributed allocation (AllocationType = 1)

GapRequired0 or 1Distributed allocation gap, ‘0' for Ngap,1 or ‘1' for Ngap,2

The set of valid transport block sizes is specified in TS 36.213, Table 7.1.7.2.1-1, [4]. Only columns 2 and 3 apply to the SIB DL-SCH. The Data field is padded with zeros to the closest valid size from this table.

    Note:  

    • Per TS 36.321, Section 6.1.1 [5], the lowest order information bit of the SIB.Data field is mapped to the most significant bit of the SIB1 transport block.

    • For subframe 5, per TS 36.101, Annex A.3 [1], reference PDSCH transmissions are not scheduled in subframe 5 except for the SIB1 associated PDSCH.

    • Setting the OCNG parameter field 'On' fills all unused, unscheduled PDSCH resource elements with QPSK modulated random data.

    • The values for CFI and PRBSet can vary per subframe. If these parameters are arrays, then the function cyclically steps through the elements of the array starting with the index given by mod(NSubframe,length(parameter)). When ‘parameter' is PRBSet, the parameter must be a cell array of column vectors or slot-wise matrices.

    • The PHICH symbols carry a single ACK on the first PHICH instance in each PHICH group.

OCNGPDSCH substructure

The substructure, OCNGPDSCH, defines the OCNG patterns in associated RMCs and tests according to TS 36.101, Section A.5 [1]. OCNGPDSCH contains these fields which can also be customized with the full range of PDSCH-specific values.

Parameter FieldRequired or OptionalValuesDescription
ModulationRequired

('QPSK', '16QAM', '64QAM', '256QAM') String or cell array of strings.

Modulation type, specified as a string or cell array of strings. If 2 blocks, each cell is associated with a transport block.

TxSchemeRequired

Default TxScheme is RMC-dependent. Valid values include: 'SpatialMux', 'Port0', 'TxDiversity', 'CDD', 'MultiUser', 'Port5', 'Port7-8', 'Port8', 'Port7-14'

OCNG transmission scheme, specified as one of these options.
  • 'Port0' — Single-antenna port, port 0

  • 'TxDiversity' — Transmit diversity scheme

  • 'CDD' — Large delay CDD scheme

  • 'SpatialMux' — Closed-loop spatial multiplexing

  • 'MultiUser' — Multiuser MIMO scheme

  • 'Port5' — Single-antenna port, port 5

  • 'Port7-8' — Single-antenna port, port 7 (when NLayers = 1). Dual layer transmission, ports 7 and 8 (when NLayers = 2).

  • 'Port8' — Single-antenna port, port 8

  • 'Port7-14' — Up to eight-layer transmission, ports 7–14

RNTIRequired

Scalar integer

default 0

Radio network temporary identifier (RNTI) value (16 bits) for OCNG

Data Types: struct

Output Arguments

collapse all

waveform — Generated RMC time-domain waveformnumeric matrix

Generated RMC time-domain waveform, returned as a numeric matrix of size T-by-P. Where T is the number of time-domain samples and P is the number of antennas.

Data Types: double
Complex Number Support: Yes

grid — Populated resource gridnumeric 3-D array

Populated resource grid, returned as a numeric 3-D array of resource elements for several subframes across all configured antenna ports.

Data Types: double
Complex Number Support: Yes

rmccfgout — Reference channel configurationscalar structure

Reference channel configuration, returned as a scalar structure. rmccfgout contains information about the OFDM-modulated waveform and RMC-specific configuration parameters. Structure contents and definitions align with rmccfg.

Data Types: struct

References

[1] 3GPP TS 36.101. "User Equipment (UE) radio transmission and reception." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: http://www.3gpp.org.

[2] 3GPP TS 36.211. "Physical channels and modulation." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: http://www.3gpp.org.

[3] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: http://www.3gpp.org.

[4] 3GPP TS 36.213. "Physical layer procedures." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: http://www.3gpp.org.

[5] 3GPP TS 36.321. "Medium Access Control (MAC) protocol specification." 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). URL: http://www.3gpp.org.

Introduced in R2014a

Was this topic helpful?