Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Modeling the Earth

Represent the shape and size of the Earth; represent ellipsoids; convert between parameters

Functions

wgs84Ellipsoid Reference ellipsoid for World Geodetic System 1984
earthRadius Mean radius of planet Earth
rcurve Ellipsoidal radii of curvature
rsphere Radii of auxiliary spheres
geocentricLatitude Convert geodetic to geocentric latitude
parametricLatitude Convert geodetic to parametric latitude
geodeticLatitudeFromGeocentric Convert geocentric to geodetic latitude
geodeticLatitudeFromParametric Convert parametric to geodetic latitude
axes2ecc Eccentricity of ellipse from axes lengths
majaxis Semimajor axis of ellipse
minaxis Semiminor axis of ellipse
ecc2flat Flattening of ellipse from eccentricity
flat2ecc Eccentricity of ellipse from flattening
ecc2n Third flattening of ellipse from eccentricity
n2ecc Eccentricity of ellipse from third flattening

Classes

oblateSpheroid Oblate ellipsoid of revolution
referenceEllipsoid Reference ellipsoid
referenceSphere Reference sphere
map.geodesy.AuthalicLatitudeConverter Convert between geodetic and authalic latitudes
map.geodesy.ConformalLatitudeConverter Convert between geodetic and conformal latitudes
map.geodesy.IsometricLatitudeConverter Convert between geodetic and isometric latitudes
map.geodesy.RectifyingLatitudeConverter Convert between geodetic and rectifying latitudes

Topics

Shape of the Earth

The Earth can be modeled as a perfect sphere, an oblate spheroid, an ellipsoid, or a geoid.

Reference Spheroids

A reference spheroid is a model of a roughly-spherical astronomical body.

Working with Reference Spheroids

Use reference spheroids to create map projections, to calculate curves and areas on the surface of a spheroid, and to transform 3-D geodetic coordinates.

Was this topic helpful?