Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

antipode

Point on opposite side of globe

Syntax

[newlat,newlon] = antipode(lat,lon)
[newlat,newlon] = antipode(lat,lon,angleunits)

Description

[newlat,newlon] = antipode(lat,lon) returns the geographic coordinates of the points exactly opposite on the globe from the input points given by lat and lon. All angles are in degrees.

[newlat,newlon] = antipode(lat,lon,angleunits) where angleunits specifies the input and output units as either 'degrees' or 'radians'. It can be abbreviated and is case-insensitive.

Examples

Find Antipode of Given Point

Given a point (43ºN, 15ºE), find its antipode:

[newlat,newlong] = antipode(43,15)
newlat =
         -43
newlong =
         -165			

or (43ºS, 165ºW).

Find Antipode of North and South Poles

Perhaps the most obvious antipodal points are the North and South Poles. The function antipode demonstrates this:

[newlat,newlong] = antipode(90,0,'degrees')
newlat =
         -90
newlong =
         180			

Note that in this case longitudes are irrelevant because all meridians converge at the poles.

Find Antipode of MathWorks Headquarters

This example shows how to find the antipode of the location of the MathWorks corporate headquarters in Natick, Massachusetts. The example maps the headquarters location and its antipode in an orthographic projection.

Specify latitude and longitude as degree-minutes-seconds and then convert to decimal degrees.

mwlat = dms2degrees([ 42 18 2.5])
mwlon = dms2degrees([-71 21 7.9])
mwlat =

   42.3007


mwlon =

  -71.3522

Find the antipode.

[amwlat amwlon] = antipode(mwlat,mwlon)
amwlat =

  -42.3007


amwlon =

  108.6478

Prove that these points are antipodes. The distance function shows them to be 180 degrees apart.

dist = distance(mwlat,mwlon,amwlat,amwlon)
dist =

  180.0000

Generate a map centered on the original point and then another map centered on the antipode.

figure
subplot(1,2,1)
axesm ('MapProjection','ortho','origin',[mwlat mwlon],...
       'frame','on','grid','on')
load coastlines
geoshow(coastlat,coastlon,'displaytype','polygon')
geoshow(mwlat,mwlon,'Marker','o','Color','red')
title(sprintf('Looking down at\n(%s,%s)', ...
    angl2str(mwlat,'ns'), angl2str(mwlon,'ew')))

subplot(1,2,2)
axesm ('MapProjection','ortho','origin',[amwlat amwlon],...
       'frame','on','grid','on')
geoshow(coastlat,coastlon,'displaytype','polygon')
geoshow(amwlat,amwlon,'Marker','o','Color','red')
title(sprintf('Looking down at\n(%s,%s)', ...
    angl2str(amwlat,'ns'), angl2str(amwlon,'ew')))

Introduced before R2006a

Was this topic helpful?