Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

rsphere

Radii of auxiliary spheres

Syntax

r = rsphere('biaxial',ellipsoid)
r = rsphere('biaxial',ellipsoid,method)
r = rsphere('triaxial',ellipsoid)
r = rsphere('triaxial',ellipsoid,method)
r = rsphere('eqavol',ellipsoid)
r = rsphere('authalic',ellipsoid)
r = rsphere('rectifying',ellipsoid)
r = rsphere('curve',ellipsoid,lat)
r = rsphere('curve',ellipsoid,lat,method)
r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid)
r = rsphere('curve', ..., angleUnits)
r = rsphere(‘euler’, ..., angleUnits)

Description

r = rsphere('biaxial',ellipsoid) computes the arithmetic mean i.e., (a+b)/2 where a and b are the semimajor and semiminor axes of the specified ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity].

r = rsphere('biaxial',ellipsoid,method) computes the arithmetic mean if method is 'mean' and the geometric mean, sqrt(a*b), if method is 'norm'.

r = rsphere('triaxial',ellipsoid) computes the triaxial arithmetic mean of the semimajor axes, a, and semininor axes, b of the ellipsoid, (2*a+b)/3.

r = rsphere('triaxial',ellipsoid,method) computes the arithmetic mean if method is 'mean' and the triaxial geometric mean, (a^2*b)^(1/3), if method is 'norm'.

r = rsphere('eqavol',ellipsoid) returns the radius of a sphere with a volume equal to that of the ellipsoid.

r = rsphere('authalic',ellipsoid) returns the radius of a sphere with a surface area equal to that of the ellipsoid.

r = rsphere('rectifying',ellipsoid) returns the radius of a sphere with meridional distances equal to those of the ellipsoid.

r = rsphere('curve',ellipsoid,lat) computes the arithmetic mean of the transverse and meridional radii of curvature at the latitude, lat. lat is in degrees.

r = rsphere('curve',ellipsoid,lat,method) computes an arithmetic mean if method is 'mean' and a geometric mean if method is 'norm'.

r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid) computes the Euler radius of curvature at the midpoint of the geodesic arc defined by the endpoints (lat1,lon1) and (lat2,lon2). lat1, lon1, lat2, and lon2 are in degrees.

r = rsphere('curve', ..., angleUnits) and r = rsphere(‘euler’, ..., angleUnits) where angleUnits specifies the units of the latitude and longitude inputs as either 'degrees' or 'radians'.

Examples

Different criteria result in different spheres:

r = rsphere('biaxial',referenceEllipsoid('earth','km'))

r =
   6.3674e+03

r = rsphere('triaxial',referenceEllipsoid('earth','km'))

r =
   6.3710e+03

r = rsphere('curve',referenceEllipsoid('earth','km'))

r =
   6.3781e+03

See Also

Introduced before R2006a

Was this topic helpful?