cot

Cotangent of angle in radians

Syntax

Description

example

Y = cot(X) returns the cotangent of elements of X. The cot function operates element-wise on arrays. The function accepts both real and complex inputs. For real values of X in the interval [-Inf,Inf], cot returns real values in the interval [-Inf,Inf].. For complex values of X, cot returns complex values. All angles are in radians.

Examples

expand all

Plot Cotangent Function

Plot the cotangent function over the domain $-\pi<x<0$ and $0<x<\pi$ .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Cotangent of Vector of Complex Angles

Calculate the cotangent of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = cot(x)
y =

   0.0000 + 1.3130i  -0.0000 - 1.0903i  -0.0006 - 0.9997i

Input Arguments

expand all

X — Input angle in radiansnumber | vector | matrix | multidimensional array

Input angle in radians, specified as a number, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

expand all

Y — Cotangent of input anglescalar value | vector | matrix | N-D array

Cotangent of input angle, returned as a real-valued or complex-valued scalar, vector, matrix or N-D array.

More About

expand all

Cotangent Function

The cotangent of an angle, α, defined with reference to a right angled triangle is

cot(α)=1tan(α)=adjacent sideopposite side=ba.

.

The cotangent of a complex angle α is

cotangent(α)=i(eiα+eiα)(eiαeiα).

.

See Also

| | | |

Was this topic helpful?