Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

DelaunayTri

Class: DelaunayTri

(Not recommended) Construct Delaunay triangulation

Syntax

DT = DelaunayTri()
DT = DelaunayTri(X)
DT = DelaunayTri(x,y)
DT = DelaunayTri(x,y,z)
DT = DelaunayTri(..., C)

Description

DT = DelaunayTri() creates an empty Delaunay triangulation.

DT = DelaunayTri(X), DT = DelaunayTri(x,y) and DT = DelaunayTri(x,y,z) create a Delaunay triangulation from a set of points. The points can be specified as an mpts-by-ndim matrix X, where mpts is the number of points and ndim is the dimension of the space where the points reside, where ndim is 2 or 3. Alternatively, the points can be specified as column vectors (x,y) or (x,y,z) for 2-D and 3-D input.

DT = DelaunayTri(..., C) creates a constrained Delaunay triangulation. The edge constraints C are defined by an numc-by-2 matrix, numc being the number of constrained edges. Each row of C defines a constrained edge in terms of its endpoint indices into the point set X. This feature is only supported for 2-D triangulations.

Examples

Compute the Delaunay triangulation of twenty random points located within a unit square.

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y)
triplot(dt);

For more examples, type help demoDelaunayTri at the MATLAB® command-line prompt.

Definitions

expand all

Was this topic helpful?