This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.


(Not recommended) Easy-to-use combination surface/contour plotter

ezsurfc is not recommended. Use fsurf instead.


h = ezsurfc(...)


ezsurfc(fun) creates a graph of fun(x,y) using the surfc function. The function fun is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle or a character vector (see the Tips section).

ezsurfc(fun,domain) plots fun over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min < x < max, min < y < max).

ezsurfc(funx,funy,funz) plots the parametric surface funx(s,t), funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax]) or ezsurfc(funx,funy,funz,[min,max]) plots the parametric surface using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

ezsurfc(axes_handle,...) plots into the axes with handle axes_handle instead of the current axes (gca).

h = ezsurfc(...) returns the handles to the graphics objects in h.


collapse all

Create a surface/contour plot of the expression over the domain and with a computational grid size of 35-by-35.

ezsurfc('sqrt(x^2 + y^2)',[-5,5,-2*pi,2*pi],35)


ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a Character Vector

Array multiplication, division, and exponentiation are always implied in the expression you pass to ezsurfc. For example, the MATLAB® syntax for a surface/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the character vector you pass to ezsurfc.

If the function to be plotted is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurfc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax. For example, the following statements define an anonymous function and pass the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);

Note that when using function handles, you must use the array power, array multiplication, and array division operators (.^, .*, ./) since ezsurfc does not alter the syntax, as in the case with character vector inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:


Introduced before R2006a

Was this topic helpful?