Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

scatter3

3-D scatter plot

Syntax

Description

example

scatter3(X,Y,Z) displays circles at the locations specified by the vectors X, Y, and Z.

example

scatter3(X,Y,Z,S) draws each circle with the size specified by S. To plot each circle with equal size, specify S as a scalar. To plot each circle with a specific size, specify S as a vector.

example

scatter3(X,Y,Z,S,C) draws each circle with the color specified by C.

  • If C is a character vector of a color name or an RGB triplet, then all circles are plotted with the specified color.

  • If C is a three column matrix with the number of rows in C equal to the length of X, Y, and Z, then each row of C specifies an RGB color value for the corresponding circle.

  • If C is a vector with length equal to the length of X, Y, and Z, then the values in C are linearly mapped to the colors in the current colormap.

example

scatter3(___,'filled') fills in the circles, using any of the input argument combinations in the previous syntaxes.

example

scatter3(___,markertype) specifies the marker type.

example

scatter3(___,Name,Value) specifies scatter series properties using one or more Name,Value pair arguments.

example

scatter3(ax,___) plots into the axes specified by ax instead of into the current axes (gca). The ax option can precede any of the input argument combinations in the previous syntaxes.

example

h = scatter3(___) returns the scatter series object. Use h to modify properties of the scatter series after it is created.

Examples

collapse all

Create a 3-D scatter plot. Use sphere to define vectors x, y, and z.

figure
[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];
scatter3(x,y,z)

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vector s to specify the marker sizes.

S = repmat([100,50,5],numel(X),1);
s = S(:);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,s)
view(40,35)

Corresponding entries in x, y, z, and s determine the location and size of each marker.

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vectors s and c to specify the size and color of each marker.

S = repmat([50,25,10],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,s,c)
view(40,35)

Corresponding entries in x, y, z, and c determine the location and color of each marker.

Create vectors x and y as cosine and sine values with random noise.

z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and fill in the markers. Use view to change the angle of the axes in the figure.

scatter3(x,y,z,'filled')
view(-30,10)

Initialize the random-number generator to make the output of rand repeatable. Define vectors x and y as cosine and sine values with random noise.

rng default
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and set the marker type. Use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,'*')
view(-30,10)

Initialize the random-number generator to make the output of rand repeatable. Define vectors x and y as cosine and sine values with random noise.

rng default
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and set the marker edge color and the marker face color. Use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,...
        'MarkerEdgeColor','k',...
        'MarkerFaceColor',[0 .75 .75])
view(-30,10)

Load the seamount data set to get vectors x, y, and z.

load seamount

Create a figure with two subplots and return the handles to the two axes in array hs. In each subplot, create a 3-D scatter plot. Specify the marker properties for each scatter plot.

figure
hs(1) = subplot(2,1,1);
hs(2) = subplot(2,1,2);
scatter3(hs(1),x,y,z,'MarkerFaceColor',[0 .75 .75])
scatter3(hs(2),x,y,z,'*')

Use the sphere function to create vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Create vectors s and c to specify the size and color for each marker.

S = repmat([70,50,20],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and return the scatter series object.

h = scatter3(x,y,z,s,c);

Use an RGB triplet color value to set the marker face color. Starting in R2014b, you can use dot notation to set properties. If you are using an earlier release, use the set function instead.

h.MarkerFaceColor = [0 0.5 0.5];

Input Arguments

collapse all

x values, specified as a vector. X, Y, and Z must be vectors of equal length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical

y values, specified as a vector. X, Y, and Z must be vectors of equal length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical

z values, specified as a vector. X, Y, and Z must be vectors of equal length.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical

Marker area, specified as a scalar, a vector, or []. The values in S must be positive. The units for area are points squared.

  • If S is a scalar, then scatter3 plots all markers with the specified area.

  • If S is a row or column vector, then each entry in S specifies the area for the corresponding marker. The length of S must equal the length of X, Y and Z. Corresponding entries in X, Y, Z and S determine the location and area of each marker.

  • If S is empty, then the default size of 36 points squared is used.

Example: 50

Example: [36,25,25,17,46]

Marker color, specified as a character vector of a color name, an RGB triplet, a three-column matrix of RGB triplet, or a vector.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. This table lists the long and short color name options and the equivalent RGB triplet values.

Long NameShort NameRGB Triplet
'yellow''y'[1 1 0]
'magenta''m'[1 0 1]
'cyan''c'[0 1 1]
'red''r'[1 0 0]
'green''g'[0 1 0]
'blue''b'[0 0 1]
'white''w'[1 1 1]
'black''k'[0 0 0]

If you have three points in the scatter plot and want the colors to be indices into the colormap, specify C as a three-element column vector.

Example: 'y'

Example: [1,2,3,4]

Marker, specified as one of the markers in this table.

ValueDescription
'o'Circle
'+'Plus sign
'*'Asterisk
'.'Point
'x'Cross
'square' or 's'Square
'diamond' or 'd'Diamond
'^'Upward-pointing triangle
'v'Downward-pointing triangle
'>'Right-pointing triangle
'<'Left-pointing triangle
'pentagram' or 'p'Five-pointed star (pentagram)
'hexagram' or 'h'Six-pointed star (hexagram)
'none'No markers

Axes object. If you do not specify an axes, then scatter3 plots into the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'MarkerFaceColor','red' sets the marker face color to red.

The properties listed here are only a subset. For a complete list, see Scatter Series Properties.

collapse all

Width of marker edge, specified as a positive value in point units.

Example: 0.75

Marker outline color, specified as one of these values:

  • 'flat' — Colors defined by the CData property.

  • 'none' — No color, which makes unfilled markers invisible.

  • RGB triplet or character vector of color name — Specify a custom color.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. This table lists the long and short color name options and the equivalent RGB triplet values.

Long NameShort NameRGB Triplet
'yellow''y'[1 1 0]
'magenta''m'[1 0 1]
'cyan''c'[0 1 1]
'red''r'[1 0 0]
'green''g'[0 1 0]
'blue''b'[0 0 1]
'white''w'[1 1 1]
'black''k'[0 0 0]

Example: [0.5 0.5 0.5]

Example: 'blue'

Marker fill color, specified as one of these values:

  • 'none' — No color, which makes the interior invisible.

  • 'flat' — Colors defined by the CData property.

  • 'auto' — Same color as the Color property for the axes.

  • RGB triplet or character vector of a color name— Specify a custom color.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. This table lists the long and short color name options and the equivalent RGB triplet values.

Long NameShort NameRGB Triplet
'yellow''y'[1 1 0]
'magenta''m'[1 0 1]
'cyan''c'[0 1 1]
'red''r'[1 0 0]
'green''g'[0 1 0]
'blue''b'[0 0 1]
'white''w'[1 1 1]
'black''k'[0 0 0]

Example: [0.3 0.2 0.1]

Example: 'green'

Output Arguments

collapse all

Scatter series object, returned as a scalar. This is a unique identifier, which you can use to query and modify the properties of the scatter object after it is created.

See Also

Functions

Properties

Introduced before R2006a

Was this topic helpful?