Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

# tanh

Hyperbolic tangent

## Syntax

``Y = tanh(X)``

## Description

example

````Y = tanh(X)` returns the hyperbolic tangent of the elements of `X`. The `tanh` function operates element-wise on arrays. The function accepts both real and complex inputs. All angles are in radians.```

## Examples

collapse all

Create a vector and calculate the hyperbolic tangent of each value.

```X = [0 pi 2*pi 3*pi]; Y = tanh(X)```
```Y = 1×4 0 0.9963 1.0000 1.0000 ```

Plot the hyperbolic tangent function over the domain .

```x = -5:0.01:5; y = tanh(x); plot(x,y) grid on```

## Input Arguments

collapse all

Input angles in radians, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: `single` | `double`
Complex Number Support: Yes

collapse all

### Hyperbolic Tangent

The hyperbolic tangent of an angle x is the ratio of the hyperbolic sine and hyperbolic cosine

`$\mathrm{tanh}\left(x\right)=\frac{\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}=\frac{{e}^{2x}-1}{{e}^{2x}+1}.$`

In terms of the traditional tangent function with a complex argument, the identity is

`$\mathrm{tanh}\left(x\right)=-i\mathrm{tan}\left(ix\right)\text{\hspace{0.17em}}.$`