# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

# barycentricToCartesian

Convert point coordinates from barycentric to Cartesian

## Syntax

```PC = barycentricToCartesian(TR,ti,B) ```

## Description

`PC = barycentricToCartesian(TR,ti,B)` returns the Cartesian coordinates of the points in `B`. Each row, `B(j,:)`, contains the barycentric coordinates of a point with respect to the triangle or tetrahedron, `ti(j)`. The point, `PC(j,:)`, is the `j`th point represented in Cartesian coordinates.

## Input Arguments

 `TR` Triangulation representation, see `triangulation` or `delaunayTriangulation`. `ti` Triangle or tetrahedron IDs, specified as a column vector. `B` Barycentric coordinates, specified as a matrix. Each row, `B(j,:)`, contains the barycentric coordinates of a point with respect to the triangle or tetrahedron, `ti(j)`.

## Output Arguments

 `PC` Cartesian coordinates, returned as a matrix. The point, `PC(j,:)`, is the `j`th point represented in Cartesian coordinates.

## Examples

expand all

Create a triangulation from a set of points, `P`, and triangulation connectivity list, `T`.

```P = [ 2.5 8.0 6.5 8.0 2.5 5.0 6.5 5.0 1.0 6.5 8.0 6.5]; T = [5 3 1; 3 2 1; 3 4 2; 4 6 2]; TR = triangulation(T,P);```

Specify the first triangle.

`ti = 1;`

Specify the barycentric coordinates of the second point in the triangle.

`B = [0 1 0];`

Convert the point to Cartesian coordinates.

`PC = barycentricToCartesian(TR,ti,B)`
```PC = 2.5000 5.0000 ```

Create a Delaunay triangulation from a set of points.

```x = [0 4 8 12 0 4 8 12]'; y = [0 0 0 0 8 8 8 8]'; DT = delaunayTriangulation(x,y);```

Calculate the Cartesian coordinates of the incenters.

`cc = incenter(DT);`

Plot the original triangulation and reference points.

```figure subplot(1,2,1); triplot(DT); hold on; plot(cc(:,1),cc(:,2),'*r'); hold off; axis equal;```

Create a new triangulation which is a deformed version of `DT` .

```ti = DT.ConnectivityList; y = [0 0 0 0 16 16 16 16]'; TR = triangulation(ti,x,y);```

Compute the barycentric coordinates for the incenters of `DT`, and use them to compute the Cartesian coordinates of the analogous points in `TR`.

```b = cartesianToBarycentric(DT,[1:length(ti)]',cc); xc = barycentricToCartesian(TR,[1:length(ti)]',b);```

Plot the deformed triangulation and mapped locations of the reference points.

```subplot(1,2,2); triplot(TR); hold on; plot(xc(:,1),xc(:,2),'*r'); hold off; axis equal;```

expand all