Documentation

This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

incenter

Incenter of triangle or tetrahedron

Syntax

```IC = incenter(TR,ti) [IC,r] = incenter(TR,ti) ```

Description

`IC = incenter(TR,ti)` returns the coordinates of the incenter of each triangle or tetrahedron specified by `ti`.

```[IC,r] = incenter(TR,ti)``` also returns the radii of the inscribed circles or spheres.

Input Arguments

 `TR` Triangulation representation, see `triangulation` or `delaunayTriangulation`. `ti` Triangle or tetrahedron IDs, specified as a column vector.

Output Arguments

 `IC` Incenters, returned as a matrix. Each row of `IC` contains the coordinates of an incenter. For example, `IC(j,:)` is the incenter of `ti(j)`. `r` Radii of the inscribed circles or spheres, returned as a vector. `r(j)` is the radius of the inscribed circle or sphere whose center is `IC(j,:)`.

Examples

expand all

Load a 3-D triangulation.

`load tetmesh`

Calculate the incenters of the first five tetrahedra.

```TR = triangulation(tet,X); IC = incenter(TR,[1:5]')```
```IC = -6.1083 -31.0234 8.1439 -2.1439 -31.0283 5.8742 -1.9555 -31.9463 7.4112 -4.3019 -30.8460 10.5169 -3.1596 -29.3642 6.1851 ```

Create the Delaunay triangulation.

```x = [0 1 1 0 0.5]'; y = [0 0 1 1 0.5]'; DT = delaunayTriangulation(x,y);```

Calculate incenters of the triangles

`IC = incenter(DT)`
```IC = 0.2071 0.5000 0.5000 0.7929 0.7929 0.5000 0.5000 0.2071 ```

Plot the triangles and incenters.

```figure triplot(DT) axis equal axis([-0.2 1.2 -0.2 1.2]) hold on plot(IC(:,1),IC(:,2),'*r') hold off```

expand all