incenters

Class: TriRep

(Will be removed) Incenters of specified simplices

Syntax

IC = incenters(TR,SI)
[IC RIC] = incenters(TR, SI)

Description

IC = incenters(TR,SI) returns the coordinates of the incenter of each specified simplex SI.

[IC RIC] = incenters(TR, SI) returns the incenters and the corresponding radius of the inscribed circle/sphere.

Input Arguments

TRTriangulation representation.
SIColumn vector of simplex indices that index into the triangulation matrix TR.Triangulation. If SI is not specified the incenter information for the entire triangulation is returned, where the incenter associated with simplex i is the i'th row of IC.

Output Arguments

ICm-by-n matrix, where m = length(SI), the number of specified simplices, and n is the dimension of the space where the triangulation resides. Each row IC(i,:) represents the coordinates of the incenter of simplex SI(i).
RICVector of length length(SI), the number of specified simplices.

Definitions

A simplex is a triangle/tetrahedron or higher-dimensional equivalent.

Examples

Example 1

Load a 3-D triangulation:

 load tetmesh

Use TriRep to compute the incenters of the first five tetrahedra.

 trep = TriRep(tet, X)
 ic = incenters(trep, [1:5]')

Example 2

Query a 2-D triangulation created with DelaunayTri.

x = [0 1 1 0 0.5]';
y = [0 0 1 1 0.5]';
dt = DelaunayTri(x,y);

Compute incenters of the triangles:

ic = incenters(dt);

Plot the triangles and incenters:

triplot(dt);
axis equal;
axis([-0.2 1.2 -0.2 1.2]);
hold on; 
plot(ic(:,1),ic(:,2),'*r'); 
hold off;

Was this topic helpful?