# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

# incenters

Class: TriRep

(Not recommended) Incenters of specified simplices

### Note

`incenters(TriRep)` is not recommended. Use `incenter(triangulation)` instead.

`TriRep` is not recommended. Use `triangulation` instead.

## Syntax

```IC = incenters(TR,SI) [IC RIC] = incenters(TR, SI) ```

## Description

`IC = incenters(TR,SI)` returns the coordinates of the incenter of each specified simplex `SI`.

`[IC RIC] = incenters(TR, SI)` returns the incenters and the corresponding radius of the inscribed circle/sphere.

## Input Arguments

 `TR` Triangulation representation. `SI` Column vector of simplex indices that index into the triangulation matrix `TR.Triangulation`. If `SI` is not specified the incenter information for the entire triangulation is returned, where the incenter associated with simplex `i` is the `i`'th row of `IC`.

## Output Arguments

 `IC` `m`-by-`n` matrix, where ```m = length(SI)```, the number of specified simplices, and `n` is the dimension of the space where the triangulation resides. Each row `IC(i,:)` represents the coordinates of the incenter of simplex `SI(i)`. `RIC` Vector of length `length(SI)`, the number of specified simplices.

## Examples

### Example 1

` load tetmesh`

Use `TriRep` to compute the incenters of the first five tetrahedra.

``` trep = TriRep(tet, X) ic = incenters(trep, [1:5]')```

### Example 2

Query a 2-D triangulation created with `DelaunayTri`.

```x = [0 1 1 0 0.5]'; y = [0 0 1 1 0.5]'; dt = DelaunayTri(x,y);```

Compute incenters of the triangles:

`ic = incenters(dt);`

Plot the triangles and incenters:

```triplot(dt); axis equal; axis([-0.2 1.2 -0.2 1.2]); hold on; plot(ic(:,1),ic(:,2),'*r'); hold off;```

expand all