# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# vander

Vandermonde matrix

## Syntax

``A = vander(v)``

## Description

example

````A = vander(v)` returns the Vandermonde Matrix such that its columns are powers of the vector `v`.```

## Examples

collapse all

Use the colon operator to create vector `v`. Find the Vandermonde matrix for `v`.

`v = 1:.5:3`
```v = 1.0000 1.5000 2.0000 2.5000 3.0000 ```
`A = vander(v)`
```A = 1.0000 1.0000 1.0000 1.0000 1.0000 5.0625 3.3750 2.2500 1.5000 1.0000 16.0000 8.0000 4.0000 2.0000 1.0000 39.0625 15.6250 6.2500 2.5000 1.0000 81.0000 27.0000 9.0000 3.0000 1.0000 ```

Find the alternate form of the Vandermonde matrix using `fliplr`.

`A = fliplr(vander(v))`
```A = 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.5000 2.2500 3.3750 5.0625 1.0000 2.0000 4.0000 8.0000 16.0000 1.0000 2.5000 6.2500 15.6250 39.0625 1.0000 3.0000 9.0000 27.0000 81.0000 ```

## Input Arguments

collapse all

Input, specified as a numeric vector.

Data Types: `single` | `double`
Complex Number Support: Yes

collapse all

### Vandermonde Matrix

For input vector $v=\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[\begin{array}{cccc}{v}_{1}& {v}_{2}& \dots & {v}_{N}\end{array}\right]$, the Vandermonde matrix is

`$\left[\begin{array}{cccc}{v}_{1}^{N-1}& \cdots & {v}_{1}^{1}& {v}_{1}^{0}\\ {v}_{2}^{N-1}& \cdots & {v}_{2}^{1}& {v}_{2}^{0}\\ & ⋰& ⋮& ⋮\\ {v}_{N}^{N-1}& & {v}_{N}^{1}& {v}_{N}^{0}\end{array}\right]$`

The matrix is described by the formula $A\left(i,j\right)=v{\left(i\right)}^{\left(N-j\right)}$ such that its columns are powers of the vector `v`.

An alternate form of the Vandermonde matrix flips the matrix along the vertical axis, as shown. Use `fliplr(vander(v))` to return this form.

`$\left[\begin{array}{cccc}{v}_{1}^{0}& {v}_{1}^{1}& \cdots & {v}_{1}^{N-1}\\ {v}_{2}^{0}& {v}_{2}^{1}& \cdots & {v}_{2}^{N-1}\\ ⋮& ⋮& \ddots & \\ {v}_{N}^{0}& {v}_{N}^{1}& & {v}_{N}^{N-1}\end{array}\right]$`