This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.


Hard-limit transfer function

Graph and Symbol


A = hardlim(N,FP)


hardlim is a neural transfer function. Transfer functions calculate a layer's output from its net input.

A = hardlim(N,FP) takes N and optional function parameters,


S-by-Q matrix of net input (column) vectors


Struct of function parameters (ignored)

and returns A, the S-by-Q Boolean matrix with 1s where N ≥ 0.

info = hardlim('code') returns information according to the code string specified:

hardlim('name') returns the name of this function.

hardlim('output',FP) returns the [min max] output range.

hardlim('active',FP) returns the [min max] active input range.

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

hardlim('fpnames') returns the names of the function parameters.

hardlim('fpdefaults') returns the default function parameters.


Here is how to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlim';

More About

collapse all


hardlim(n) = 1 if n ≥ 0

                         0 otherwise

See Also


Introduced before R2006a

Was this topic helpful?