This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.


Symmetric hard-limit transfer function

Graph and Symbol


A = hardlims(N,FP)


hardlims is a neural transfer function. Transfer functions calculate a layer's output from its net input.

A = hardlims(N,FP) takes N and optional function parameters,


S-by-Q matrix of net input (column) vectors


Struct of function parameters (ignored)

and returns A, the S-by-Q +1/–1 matrix with +1s where N ≥ 0.

info = hardlims('code') returns information according to the code string specified:

hardlims('name') returns the name of this function.

hardlims('output',FP) returns the [min max] output range.

hardlims('active',FP) returns the [min max] active input range.

hardlims('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

hardlims('fpnames') returns the names of the function parameters.

hardlims('fpdefaults') returns the default function parameters.


Here is how to create a plot of the hardlims transfer function.

n = -5:0.1:5;
a = hardlims(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

More About

collapse all


hardlims(n) = 1 if n ≥ 0, –1 otherwise.

See Also


Introduced before R2006a

Was this topic helpful?