# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# rands

Symmetric random weight/bias initialization function

## Syntax

```W = rands(S,PR) M = rands(S,R) v = rands(S) ```

## Description

`rands` is a weight/bias initialization function.

`W = rands(S,PR)` takes

 `S` Number of neurons `PR` `R`-by-`2` matrix of `R` input ranges

and returns an `S`-by-`R` weight matrix of random values between –1 and 1.

`M = rands(S,R)` returns an `S`-by-`R` matrix of random values. `v = rands(S)` returns an `S`-by-1 vector of random values.

## Examples

Here, three sets of random values are generated with `rands`.

```rands(4,[0 1; -2 2]) rands(4) rands(2,3) ```

## Network Use

To prepare the weights and the bias of layer `i` of a custom network to be initialized with `rands`,

1. Set `net.initFcn` to `'initlay'`. (`net.initParam` automatically becomes `initlay`’s default parameters.)

2. Set `net.layers{i}.initFcn` to `'initwb'`.

3. Set each `net.inputWeights{i,j}.initFcn` to `'rands'`.

4. Set each `net.layerWeights{i,j}.initFcn` to `'rands'`.

5. Set each `net.biases{i}.initFcn` to `'rands'`.

To initialize the network, call `init`.

## See Also

#### Introduced before R2006a

Was this topic helpful?

Download ebook