# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

## Systems in the PDE Modeler App

You can enter coefficients for a system with N = `2` equations in the PDE Modeler app. To do so, open the PDE Modeler app and select `Generic System`.

Then select PDE > PDE Specification.

Enter character expressions for coefficients using the form in Coefficients for Scalar PDEs in PDE Modeler App, with additional options for nonlinear equations. The additional options are:

• Represent the `i`th component of the solution `u` using `'u(i)'` for `i` = 1 or 2.

• Similarly, represent the `i`th components of the gradients of the solution `u` using `'ux(i)'` and `'uy(i)'` for `i` = 1 or 2.

### Note

For elliptic problems, when you include coefficients `u(i)`, `ux(i)`, or `uy(i)`, you must use the nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Do not use quotes or unnecessary spaces in your entries.

For higher-dimensional systems, do not use the PDE Modeler app. Represent your problem coefficients at the command line.

You can enter scalars into the `c` matrix, corresponding to these equations:

`$\begin{array}{c}-\nabla ·\left({c}_{11}\nabla {u}_{1}\right)-\nabla ·\left({c}_{12}\nabla {u}_{2}\right)+{a}_{11}{u}_{1}+{a}_{12}{u}_{2}={f}_{1}\\ -\nabla ·\left({c}_{21}\nabla {u}_{1}\right)-\nabla ·\left({c}_{22}\nabla {u}_{2}\right)+{a}_{21}{u}_{1}+{a}_{22}{u}_{2}={f}_{2}\end{array}$`

If you need matrix versions of any of the `cij` coefficients, enter expressions separated by spaces. You can give 1-, 2-, 3-, or 4-element matrix expressions. These mean:

• 1-element expression: $\left(\begin{array}{cc}c& 0\\ 0& c\end{array}\right)$

• 2-element expression: $\left(\begin{array}{cc}c\left(1\right)& 0\\ 0& c\left(2\right)\end{array}\right)$

• 3-element expression: $\left(\begin{array}{cc}c\left(1\right)& c\left(2\right)\\ c\left(2\right)& c\left(3\right)\end{array}\right)$

• 4-element expression: $\left(\begin{array}{cc}c\left(1\right)& c\left(3\right)\\ c\left(2\right)& c\left(4\right)\end{array}\right)$

For example, these expressions show one of each type (1-, 2-, 3-, and 4-element expressions)

These expressions correspond to the equations

`$\begin{array}{c}-\nabla ·\left(\left(\begin{array}{cc}4+\mathrm{cos}\left(xy\right)& 0\\ 0& 4+\mathrm{cos}\left(xy\right)\end{array}\right)\nabla {u}_{1}\right)-\nabla ·\left(\left(\begin{array}{cc}-1& 0\\ 0& 1\end{array}\right)\nabla {u}_{2}\right)=1\\ -\nabla ·\left(\left(\begin{array}{cc}.1& .2\\ .2& .3\end{array}\right)\nabla {u}_{1}\right)-\nabla ·\left(\left(\begin{array}{cc}7& .6\\ .5& \mathrm{exp}\left(x-y\right)\end{array}\right)\nabla {u}_{2}\right)=2\end{array}$`