Solve hyperbolic PDE problem

Hyperbolic equation solver

Solves PDE problems of the type

$$d\frac{{\partial}^{2}u}{\partial {t}^{2}}-\nabla \cdot \left(c\nabla u\right)+au=f,$$

on a 2-D or 3-D region Ω, or the system PDE problem

$$d\frac{{\partial}^{2}u}{\partial {t}^{2}}-\nabla \cdot \left(c\otimes \nabla u\right)+au=f.$$

The variables *c*, *a*, *f*,
and *d* can depend on position, time, and the solution *u* and
its gradient.

- example
`u = hyperbolic(u0,ut0,tlist,model,c,a,f,d)`

- example
`u = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d)`

- example
`u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M)`

`u = hyperbolic(___,rtol)`

`u = hyperbolic(___,rtol,atol)`

- example
`u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M,___,'DampingMatrix',D)`

`u = hyperbolic(___,'Stats','off')`

produces
the solution to the FEM formulation of the scalar PDE problem`u`

= hyperbolic(`u0`

,`ut0`

,`tlist`

,`model`

,`c`

,`a`

,`f`

,`d`

)

$$d\frac{{\partial}^{2}u}{\partial {t}^{2}}-\nabla \cdot \left(c\nabla u\right)+au=f,$$

on a 2-D or 3-D region Ω, or the system PDE problem

$$d\frac{{\partial}^{2}u}{\partial {t}^{2}}-\nabla \cdot \left(c\otimes \nabla u\right)+au=f,$$

with geometry, mesh, and boundary conditions specified in `model`

,
with initial value `u0`

and initial derivative with
respect to time `ut0`

. The variables *c*, *a*, *f*,
and *d* in the equation correspond to the function
coefficients `c`

, `a`

, `f`

,
and `d`

respectively.

turns
off the display of internal ODE solver statistics during the solution
process.`u`

= hyperbolic(___,'Stats','off')

Was this topic helpful?