# Documentation

## Vibration Of a Circular Membrane Using The MATLAB eigs Function

This example shows the calculation of the vibration modes of a circular membrane. The calculation of vibration modes requires the solution of the eigenvalue partial differential equation (PDE). In this example the solution of the eigenvalue problem is performed using both the PDE Toolbox™ `pdeeig` solver and the core MATLAB™ `eigs` eigensolver.

The main objective of this example is to show how `eigs` can be used with PDE Toolbox™. Generally, the eigenvalues calculated by `pdeeig` and `eigs` are practically identical. However, sometimes, it is simply more convenient to use `eigs` than `pdeeig`. One example of this is when it is desired to calculate a specified number of eigenvalues in the vicinity of a user-specified target value. `pdeeig` requires that a lower and upper bound surrounding this target value be specified. `eigs` requires only that the target eigenvalue and the desired number of eigenvalues be specified.

### Create a pde entity for a PDE with a single dependent variable

```numberOfPDE = 1; pdem = createpde(numberOfPDE); ```

### Geometry And Mesh

The geometry for a circle can easily be defined as shown below.

```radius = 2; g = decsg([1 0 0 radius]', 'C1', ('C1')'); % Create a geometry object and append it to the PDE Model geometryFromEdges(pdem,g); % Plot the geometry and display the edge labels for use in the boundary % condition definition. figure; pdegplot(pdem, 'edgeLabels', 'on'); axis equal title 'Geometry With Edge Labels Displayed'; generateMesh(pdem,'hmax', .2); % [p,e,t] = initmesh(g, 'hmax', .2); ```

### Define the PDE Coefficients and Boundary Conditions

```c = 1e2; a = 0; f = 0; d = 10; % Solution is zero at all four outer edges of the circle bOuter = applyBoundaryCondition(pdem,'Edge',(1:4), 'u', 0); ```

### Solve the eigenvalue problem using `eigs`

Use `assempde` and `assema` to calculate the global finite element mass and stiffness matrices.

```[K,~,B] = assempde(pdem,c,a,f); [~,M] = assema(pdem,c,d,f); M = B'*M*B; % apply the constraints to the mass matrix from |assema| sigma = 1e2; numberEigenvalues = 5; [eigenvectorsEigs,eigenvaluesEigs] = eigs(K,M,numberEigenvalues,sigma); % eigs orders the eigenvalues (and their eigenvectors) from highest to % lowest. Reorder these from lowest to highest to be consistent with |pdeeig|. eigenvaluesEigs = flipud(diag(eigenvaluesEigs)); % Reorder the eigenvectors. Also transform the eigenvectors with constrained % equations removed to the full eigenvector including constrained equations. eigenvectorsEigs = B*fliplr(eigenvectorsEigs); ```

### Solve the eigenvalue problem using `pdeeig`

Define the eigenvalue range for pdeeig from the output eigenvalues from eigs so that it computes the same ones.

```r = [eigenvaluesEigs(1)*.99 eigenvaluesEigs(end)*1.01]; [eigenvectorsPde,eigenvaluesPde] = pdeeig(pdem,c,a,d,r); ```
``` Basis= 10, Time= 0.01, New conv eig= 1 Basis= 19, Time= 0.02, New conv eig= 3 Basis= 28, Time= 0.06, New conv eig= 8 Basis= 37, Time= 0.17, New conv eig= 12 End of sweep: Basis= 37, Time= 0.17, New conv eig= 12 Basis= 22, Time= 0.26, New conv eig= 0 Basis= 31, Time= 0.31, New conv eig= 0 End of sweep: Basis= 31, Time= 0.31, New conv eig= 0 ```

### Compare the solutions computed by `eigs` and `pdeeig`

```eigenValueDiff = eigenvaluesPde - eigenvaluesEigs; fprintf('Maximum difference in eigenvalues from pdeeig and eigs: %e\n', ... norm(eigenValueDiff,inf)); % % As can be seen, both functions calculate the same eigenvalues. For any % eigenvalue, the eigenvector can be multiplied by an arbitrary scalar. % eigs and pdeeigs choose a different arbitrary scalar for normalizing % their eigenvectors as shown in the figure below. % h = figure; h.Position = [1 1 2 1].*h.Position; subplot(1,2,1); axis equal pdeplot(pdem,'xydata', eigenvectorsEigs(:,end), 'contour', 'on'); title(sprintf('eigs eigenvector, eigenvalue: %12.4e', eigenvaluesEigs(end))); xlabel('x'); ylabel('y'); subplot(1,2,2); axis equal pdeplot(pdem,'xydata', eigenvectorsPde(:,end), 'contour', 'on'); title(sprintf('pdeeig eigenvector, eigenvalue: %12.4e', eigenvaluesPde(end))); xlabel('x'); ylabel('y'); ```
```Maximum difference in eigenvalues from pdeeig and eigs: 5.968559e-13 ```